文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

角蛋白 15 通过 MMP-9 保护上皮细胞免受香烟烟雾诱导的上皮间质转化。

Keratin 15 protects against cigarette smoke-induced epithelial mesenchymal transformation by MMP-9.

机构信息

Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.

Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China.

出版信息

Respir Res. 2023 Nov 25;24(1):297. doi: 10.1186/s12931-023-02598-w.


DOI:10.1186/s12931-023-02598-w
PMID:38007424
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10675954/
Abstract

BACKGROUND: Chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease, is a leading cause of morbidity and mortality worldwide. Prolonged cigarette smoking (CS) that causes irreversible airway remodeling and significantly reduces lung function is a major risk factor for COPD. Keratin15 (Krt15) cells with the potential of self-renewal and differentiation properties have been implicated in the maintenance, proliferation, and differentiation of airway basal cells; however, the role of Krt15 in COPD is not clear. METHODS: Krt15 knockout (Krt15) and wild-type (WT) mice of C57BL/6 background were exposed to CS for six months to establish COPD models. Krt15-CrePGR;Rosa26-LSL-tdTomato mice were used to trace the fate of the Krt15 cells. Hematoxylin and eosin (H&E) and Masson stainings were performed to assess histopathology and fibrosis, respectively. Furthermore, lentivirus-delivered short hairpin RNA (shRNA) was used to knock down KRT15 in human bronchial epithelial (HBE) cells stimulated with cigarette smoke extract (CSE). The protein expression was assessed using western blot, immunohistochemistry, and enzyme-linked immunosorbent assay. RESULTS: Krt15 CS mice developed severe inflammatory cell infiltration, airway remodeling, and emphysema. Moreover, Krt15 knockout aggravated CS-induced secretion of matrix metalloproteinase-9 (MMP-9) and epithelial-mesenchymal transformation (EMT), which was reversed by SB-3CT, an MMP-9 inhibitor. Consistent with this finding, KRT15 knockdown promoted MMP-9 expression and EMT progression in vitro. Furthermore, Krt15 cells gradually increased in the bronchial epithelial cells and were transformed into alveolar type II (AT2) cells. CONCLUSION: Krt15 regulates the EMT process by promoting MMP-9 expression and protects the lung tissue from CS-induced injury, inflammatory infiltration, and apoptosis. Furthermore, Krt15 cells transformed into AT2 cells to protect alveoli. These results suggest Krt15 as a potential therapeutic target for COPD.

摘要

背景:慢性阻塞性肺疾病(COPD)是一种慢性炎症性肺部疾病,是全球发病率和死亡率的主要原因。导致气道重塑不可逆转并显著降低肺功能的长期吸烟(CS)是 COPD 的主要危险因素。具有自我更新和分化特性的角蛋白 15(Krt15)细胞已被牵涉到气道基底细胞的维持、增殖和分化中;然而,Krt15 在 COPD 中的作用尚不清楚。

方法:使用 C57BL/6 背景的 Krt15 敲除(Krt15)和野生型(WT)小鼠暴露于 CS 六个月以建立 COPD 模型。使用 Krt15-CrePGR;Rosa26-LSL-tdTomato 小鼠来追踪 Krt15 细胞的命运。进行苏木精和伊红(H&E)和 Masson 染色分别评估组织病理学和纤维化。此外,使用慢病毒传递的短发夹 RNA(shRNA)敲低香烟烟雾提取物(CSE)刺激的人支气管上皮(HBE)细胞中的 KRT15。使用蛋白质印迹、免疫组织化学和酶联免疫吸附测定评估蛋白质表达。

结果:Krt15 CS 小鼠发生严重的炎症细胞浸润、气道重塑和肺气肿。此外,Krt15 敲除加重了 CS 诱导的基质金属蛋白酶-9(MMP-9)和上皮间质转化(EMT)的分泌,这一过程可被 MMP-9 抑制剂 SB-3CT 逆转。与此发现一致,KRT15 敲低促进了体外 MMP-9 表达和 EMT 进展。此外,Krt15 细胞逐渐增加在支气管上皮细胞中,并转化为肺泡型 II(AT2)细胞。

结论:Krt15 通过促进 MMP-9 表达调节 EMT 过程,并保护肺组织免受 CS 诱导的损伤、炎症浸润和细胞凋亡。此外,Krt15 细胞转化为 AT2 细胞以保护肺泡。这些结果表明 Krt15 是 COPD 的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/eecf8b6f530f/12931_2023_2598_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/69abdcd5c8f7/12931_2023_2598_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/fd69147470af/12931_2023_2598_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/a4e2b53c470a/12931_2023_2598_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/22065e2fc12c/12931_2023_2598_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/c2466971c7ab/12931_2023_2598_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/5ddaa5f2c748/12931_2023_2598_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/b34e019b5ce9/12931_2023_2598_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/7758bb965115/12931_2023_2598_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/eecf8b6f530f/12931_2023_2598_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/69abdcd5c8f7/12931_2023_2598_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/fd69147470af/12931_2023_2598_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/a4e2b53c470a/12931_2023_2598_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/22065e2fc12c/12931_2023_2598_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/c2466971c7ab/12931_2023_2598_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/5ddaa5f2c748/12931_2023_2598_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/b34e019b5ce9/12931_2023_2598_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/7758bb965115/12931_2023_2598_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9502/10675954/eecf8b6f530f/12931_2023_2598_Fig9_HTML.jpg

相似文献

[1]
Keratin 15 protects against cigarette smoke-induced epithelial mesenchymal transformation by MMP-9.

Respir Res. 2023-11-25

[2]
HDAC6-selective inhibitor CAY10603 ameliorates cigarette smoke-induced small airway remodeling by regulating epithelial barrier dysfunction and reversing.

Respir Res. 2024-2-5

[3]
FERMT3 mediates cigarette smoke-induced epithelial-mesenchymal transition through Wnt/β-catenin signaling.

Respir Res. 2021-11-6

[4]
PKM2 regulates cigarette smoke-induced airway inflammation and epithelial-to-mesenchymal transition via modulating PINK1/Parkin-mediated mitophagy.

Toxicology. 2022-7

[5]
Lyn regulates epithelial-mesenchymal transition in CS-exposed model through Smad2/3 signaling.

Respir Res. 2019-9-2

[6]
Shp2 positively regulates cigarette smoke-induced epithelial mesenchymal transition by mediating MMP-9 production.

Respir Res. 2020-6-26

[7]
Protective Effect of the Total Alkaloid Extract from Bulbus in a Mouse Model of Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease.

Int J Chron Obstruct Pulmon Dis. 2024

[8]
GLUT3-mediated cigarette smoke-induced epithelial-mesenchymal transition in chronic obstructive pulmonary disease through the NF-kB/ZEB1 pathway.

Respir Res. 2024-4-9

[9]
IL-17A Promotes Epithelial ADAM9 Expression in Cigarette Smoke-Related COPD.

Int J Chron Obstruct Pulmon Dis. 2022

[10]
MMP-2 and MMP-9 mediate cigarette smoke extract-induced epithelial-mesenchymal transition in airway epithelial cells via EGFR/Akt/GSK3β/β-catenin pathway: Amelioration by fisetin.

Chem Biol Interact. 2019-10-10

引用本文的文献

[1]
Airway remodeling in chronic obstructive pulmonary disease: characteristics and opportunities.

Front Med (Lausanne). 2025-7-28

[2]
Pre-Existing Diabetes Alters Pulmonary Inflammatory Gene Expression Priming for Injury.

FASEB J. 2025-7-31

[3]
Regulator of cullins-1 predicts a poor prognosis and regulates epithelial-mesenchymal transition process through GSK-3β/Wnt signaling in renal cell carcinoma.

Transl Androl Urol. 2025-4-30

[4]
Based exploration of the diagnostic value of oxidative stress-related key genes in chronic obstructive pulmonary disease.

Cell Biol Toxicol. 2025-4-11

[5]
Lsm2 is critical to club cell proliferation and its inhibition aggravates COPD progression.

Respir Res. 2025-2-28

[6]
Dietary Zinc activates the Nrf2 signaling pathway to inhibit pyroptosis and attenuate the lung inflammatory response in COPD.

Cytotechnology. 2025-4

[7]
Cigarette Smoke-Induced Epithelial-to-Mesenchymal Transition: Insights into Cellular Mechanisms and Signaling Pathways.

Cells. 2024-8-29

[8]
High keratin 15 expression reflects favorable prognosis in early cervical cancer patients.

Ir J Med Sci. 2024-8

本文引用的文献

[1]
Animal models: An essential tool to dissect the heterogeneity of chronic obstructive pulmonary disease.

J Transl Int Med. 2023-5-7

[2]
Krt14 and Krt15 differentially regulate regenerative properties and differentiation potential of airway basal cells.

JCI Insight. 2023-1-24

[3]
Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019.

BMJ. 2022-7-27

[4]
Chronic obstructive pulmonary disease.

Lancet. 2022-6-11

[5]
Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis.

Lancet Respir Med. 2022-5

[6]
FERMT3 mediates cigarette smoke-induced epithelial-mesenchymal transition through Wnt/β-catenin signaling.

Respir Res. 2021-11-6

[7]
GLIPR1 Protects Against Cigarette Smoke-Induced Airway Inflammation via PLAU/EGFR Signaling.

Int J Chron Obstruct Pulmon Dis. 2021

[8]
Heterogeneity in Human Induced Pluripotent Stem Cell-derived Alveolar Epithelial Type II Cells Revealed with ABCA3/SFTPC Reporters.

Am J Respir Cell Mol Biol. 2021-10

[9]
Pharmacological treatment of stable chronic obstructive pulmonary disease.

Respirology. 2021-7

[10]
Contemporary perspectives in COPD: Patient burden, the role of gender and trajectories of multimorbidity.

Respirology. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索