Estévez-Varela Carla, Núñez-Sánchez Sara, Piñeiro-Varela Paula, de Aberasturi Dorleta Jiménez, Liz-Marzán Luis M, Pérez-Juste Jorge, Pastoriza-Santos Isabel
CINBIO, Universidade de Vigo, Vigo, 36310, Spain.
Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, Braga, 4710-057, Portugal.
Small. 2024 Sep;20(39):e2306045. doi: 10.1002/smll.202306045. Epub 2023 Nov 27.
Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index. As plexcitonic nanostructures nanorattles are employed, based on J-aggregates of the cyanine dye 5,5,6,6-tetrachloro-1,1-diethyl-3,3-bis(4-sulfobutyl)benzimidazolocarbocyanine (TDBC) and plasmonic silver-coated gold nanorods, confined within mesoporous silica shells, which facilitate the adsorption of the J-aggregates onto the metallic nanorod surface, while providing high colloidal stability. Electromagnetic simulations show that the electromagnetic field is strongly confined inside the J-aggregate layer, at wavelengths near the upper plexcitonic mode, but it is damped toward the J-aggregate/water interface at the lower plexcitonic mode. This behavior is ascribed to the sharp variation of dielectric properties of the J-aggregate shell close to the plasmon resonance, which leads to a high opposite refractive index contrast between water and the TDBC shell, at the upper and the lower plexcitonic modes. This behavior is responsible for the high SERS efficiency of the plexcitonic nanorattles under both 633 nm and 532 nm laser illumination. SERS analysis showed a detection sensitivity down to the single-nanoparticle level and, therefore, an exceptionally high average SERS intensity per particle. These findings may open new opportunities for ultrasensitive biosensing and bioimaging, as superbright and highly stable optical labels based on the strong coupling effect.
激子-等离子体纳米颗粒表现出由局域表面等离子体共振介导的强光-物质相互作用,因此在光子学、太阳能电池和传感等领域具有潜在应用前景。在此,通过紫外-可见光谱和表面增强拉曼散射(SERS)光谱对这些光-物质相互作用进行了研究,并得到了时域有限差分(FDTD)计算的支持。我们的结果揭示了将等离子体纳米材料与近零折射率的J-聚集体相结合的重要性。使用了基于花青染料5,5,6,6-四氯-1,1-二乙基-3,3-双(4-磺丁基)苯并咪唑并碳菁(TDBC)的J-聚集体和等离子体银包覆金纳米棒的激子-等离子体纳米结构纳米摇铃,它们被限制在介孔二氧化硅壳内,这有利于J-聚集体吸附到金属纳米棒表面,同时提供高胶体稳定性。电磁模拟表明,在接近上激子模式的波长处,电磁场强烈限制在J-聚集体层内,但在下激子模式下,电磁场向J-聚集体/水界面衰减。这种行为归因于接近等离子体共振时J-聚集体壳层介电性质的急剧变化,这导致在上下激子模式下,水与TDBC壳层之间具有高的相反折射率对比度。这种行为是激子-等离子体纳米摇铃在633 nm和532 nm激光照射下具有高SERS效率的原因。SERS分析显示检测灵敏度低至单纳米颗粒水平,因此每个颗粒具有异常高的平均SERS强度。这些发现可能为超灵敏生物传感和生物成像带来新机遇,作为基于强耦合效应的超亮且高度稳定的光学标记。