Suppr超能文献

通过 N-1 灌流实现的自动化高接种密度流加生物反应器可适应克隆多样性并使滴度提高一倍。

An automated high inoculation density fed-batch bioreactor, enabled through N-1 perfusion, accommodates clonal diversity and doubles titers.

机构信息

Research and Development, Lonza Biologics, Bend, Oregon, USA.

Research and Development, Lonza Biologics, Portsmouth, New Hampshire, USA.

出版信息

Biotechnol Prog. 2024 Mar-Apr;40(2):e3410. doi: 10.1002/btpr.3410. Epub 2023 Nov 28.

Abstract

An important consideration for biopharmaceutical processes is the cost of goods (CoGs) of biotherapeutics manufacturing. CoGs can be reduced by dramatically increasing the productivity of the bioreactor process. In this study, we demonstrate that an intensified process which couples a perfused N-1 seed reactor and a fully automated high inoculation density (HID) N stage reactor substantially increases the bioreactor productivity as compared to a low inoculation density (LID) control fed-batch process. A panel of six CHOK1SV GS-KO® CHO cell lines expressing three different monoclonal antibodies was evaluated in this intensified process, achieving an average 85% titer increase and 132% space-time yield (STY) increase was demonstrated when comparing the 12-day HID process to a 15-day LID control process. These productivity increases were enabled by automated nutrient feeding in both the N-1 and N stage bioreactors using in-line process analytical technologies (PAT) and feedback control. The N-1 bioreactor utilized in-line capacitance to automatically feed the bioreactor based on a capacitance-specific perfusion rate (CapSPR). The N-stage bioreactor utilized in-line Raman spectroscopy to estimate real-time concentrations of glucose, phenylalanine, and methionine, which are held to target set points using automatic feed additions. These automated feeding methodologies were shown to be generalizable across six cell lines with diverse feed requirements. We show this new process can accommodate clonal diversity and reproducibly achieve substantial titer uplifts compared to traditional cell culture processes, thereby establishing a baseline technology platform upon which further increases bioreactor productivity and CoGs reduction can be achieved.

摘要

对于生物制药工艺来说,一个重要的考虑因素是生物疗法制造的成本(CoGs)。通过大幅提高生物反应器工艺的生产率,可以降低 CoGs。在这项研究中,我们证明了一种强化工艺,该工艺将灌注 N-1 种子反应器与全自动高接种密度(HID)N 级反应器相结合,与低接种密度(LID)补料分批工艺相比,可大大提高生物反应器的生产率。在这个强化工艺中,评估了表达三种不同单克隆抗体的六个 CHOK1SV GS-KO® CHO 细胞系,与 15 天的 LID 对照工艺相比,当比较 12 天的 HID 工艺时,平均滴度提高了 85%,时空产率(STY)提高了 132%。这些生产率的提高是通过在 N-1 和 N 级生物反应器中使用在线过程分析技术(PAT)和反馈控制进行自动营养物进料实现的。N-1 生物反应器利用在线电容,根据特定于电容的灌注率(CapSPR)自动为生物反应器进料。N 级生物反应器利用在线拉曼光谱法来实时估计葡萄糖、苯丙氨酸和蛋氨酸的浓度,使用自动补料添加将这些浓度保持在目标设定点。这些自动进料方法被证明在具有不同进料要求的六个细胞系中具有通用性。我们表明,与传统细胞培养工艺相比,这种新工艺可以适应克隆多样性,并可重复实现显著的滴度提高,从而建立了一个可以进一步提高生物反应器生产率和降低 CoGs 的基准技术平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验