Kleinfeld D, Pendergraft D B
Biophys J. 1987 Jan;51(1):47-53. doi: 10.1016/S0006-3495(87)83310-6.
The storage and retrieval of information in networks of biological neurons can be modeled by certain types of content addressable memories (CAMs). We demonstrate numerically that the amount of information that can be stored in such CAMs is substantially increased by an unlearning algorithm. Mechanisms for the increase in capacity are identified and illustrated in terms of an energy function that describes the convergence properties of the network.
生物神经元网络中信息的存储和检索可以通过某些类型的内容可寻址存储器(CAM)来建模。我们通过数值证明,一种遗忘算法可大幅增加此类CAM中可存储的信息量。从描述网络收敛特性的能量函数角度,识别并说明了容量增加的机制。