Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.
Songjiang Research Institute, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
J Pineal Res. 2024 Jan;76(1):e12927. doi: 10.1111/jpi.12927. Epub 2023 Nov 28.
The pineal gland has evolved from a photoreceptive organ in fish to a neuroendocrine organ in mammals. This study integrated multiple daytime single-cell RNA-seq datasets from the pineal glands of zebrafish, rats, and monkeys, providing a detailed examination of the evolutionary transition at single-cell resolution. We identified key factors responsible for the anatomical and functional transformation of the pineal gland. We retrieved and integrated daytime single-cell transcriptomic datasets from the pineal glands of zebrafish, rats, and monkeys, resulting in a total of 22 431 cells after rigorous quality filtering. Comparative analysis was then conducted to elucidate the evolution of pineal cells, their photosensitivity, their role in melatonin production, and the signaling processes within the glands of these species. Our analysis identified distinct cellular compositions of the pineal gland in zebrafish, rats, and monkeys. Zebrafish photoreceptors exhibited comprehensive phototransduction gene expression, while specific genes, including transducin (Gngt1, Gnb3, and Gngt2) and phosducin (Pdc), were consistently present in mammalian pinealocytes. We found transcriptional similarities between the pineal gland and retina, underscoring shared evolutionary and functional pathways. Zebrafish displayed unique light-responsive circadian gene activity compared to rats and monkeys. Key ligand-receptor interactions were identified, especially involving MDK and PTN, influencing melatonin synthesis across species. Furthermore, we observed species-specific GPCR (G protein-coupled receptors) expressions related to melatonin synthesis and their alignment with retinal expressions. Our findings also highlighted specific transcription factors (TFs) and regulatory networks associated with pineal gland evolution and function. Our study provides a detailed analysis of the pineal gland's evolution from fish to mammals. We identified key transcriptional changes and controls that highlight the gland's functional diversity. Notably, we found significant ligand-receptor interactions influencing melatonin synthesis and demonstrated parallels between pineal and retinal expressions. These insights enhance our understanding of the pineal gland's role in phototransduction, melatonin production, and circadian rhythms in vertebrates.
松果腺从鱼类的感光器官进化为哺乳动物的神经内分泌器官。本研究整合了来自斑马鱼、大鼠和猴子松果体的多个日间单细胞 RNA-seq 数据集,以单细胞分辨率详细研究了进化转变。我们确定了导致松果体解剖和功能转化的关键因素。我们检索并整合了来自斑马鱼、大鼠和猴子松果体的日间单细胞转录组数据集,经过严格的质量过滤后,共获得 22431 个细胞。然后进行比较分析,以阐明松果体细胞的进化、它们的光敏性、它们在褪黑素产生中的作用以及这些物种腺体中的信号转导过程。我们的分析确定了斑马鱼、大鼠和猴子松果体的不同细胞组成。斑马鱼光感受器表现出全面的光转导基因表达,而哺乳动物松果体细胞中则一致存在特定基因,包括转导蛋白(Gngt1、Gnb3 和 Gngt2)和光转导蛋白(Pdc)。我们发现松果体和视网膜之间存在转录相似性,强调了共同的进化和功能途径。与大鼠和猴子相比,斑马鱼显示出独特的光响应昼夜节律基因活性。确定了关键的配体-受体相互作用,特别是涉及 MDK 和 PTN 的相互作用,这些相互作用影响了跨物种的褪黑素合成。此外,我们观察到与褪黑素合成相关的物种特异性 GPCR(G 蛋白偶联受体)表达及其与视网膜表达的一致性。我们的研究结果还突出了与松果体进化和功能相关的特定转录因子(TF)和调控网络。本研究详细分析了从鱼类到哺乳动物的松果体进化。我们确定了关键的转录变化和调控,突出了该腺体的功能多样性。值得注意的是,我们发现了影响褪黑素合成的重要配体-受体相互作用,并证明了松果体和视网膜表达之间的平行关系。这些见解增强了我们对松果体在光转导、褪黑素产生和脊椎动物昼夜节律中的作用的理解。