Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
Autophagy. 2024 Jun;20(6):1247-1269. doi: 10.1080/15548627.2023.2288528. Epub 2023 Dec 5.
CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253). In addition to lower mitophagy and autophagy flux in skeletal muscle, mKO led to increased mitochondrial PRKN/parkin accumulation, which suggests that CARM1 is required for basal mitochondrial turnover and autophagic clearance. deletion also elicited PPARGC1A (PPARG coactivator 1 alpha) activity and a slower, more oxidative muscle phenotype. As such, these mKO-evoked adaptations disrupted mitophagy and autophagy induction during food deprivation and collectively served to mitigate fasting-induced muscle atrophy. Furthermore, at the threshold of muscle atrophy during food deprivation experiments in humans, skeletal muscle CARM1 activity decreased similarly to our observations in mice, and was accompanied by site-specific activation of ULK1 (Ser757), highlighting the translational impact of the methyltransferase in human skeletal muscle. Taken together, our results indicate that CARM1 governs mitophagic, autophagic, and atrophic processes fundamental to the maintenance and remodeling of muscle mass. Targeting the enzyme may provide new therapeutic approaches for mitigating skeletal muscle atrophy.: ADMA: asymmetric dimethylarginine; AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CARM1: coactivator associated arginine methyltransferase 1; Col: colchicine; CSA: cross-sectional area; CTNS: cystinosin, lysosomal cystine transporter; EDL: extensor digitorum longus; FBXO32/MAFbx: F-box protein 32; FOXO: forkhead box O; GAST: gastrocnemius; HO: hydrogen peroxide; IMF: intermyofibrillar; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; mKO: skeletal muscle-specific knockout; MMA: monomethylarginine; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OXPHOS: oxidative phosphorylation; PABPC1/PABP1: poly(A) binding protein cytoplasmic 1; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PRMT: protein arginine methyltransferase; Sal: saline; SDMA: symmetric dimethylarginine; SIRT1: sirtuin 1; SKP2: S-phase kinase associated protein 2; SMARCC1/BAF155: SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1; SOL: soleus; SQSTM1/p62: sequestosome 1; SS: subsarcolemmal; TA: tibialis anterior; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; TRIM63/MuRF1: tripartite motif containing 63; ULK1: unc-51 like autophagy activating kinase 1; VPS11: VPS11 core subunit of CORVET and HOPS complexes; WT: wild-type.
CARM1(共激活剂相关精氨酸甲基转移酶 1)最近成为骨骼肌生物学的强大调节剂。然而,甲基转移酶重塑肌肉的分子机制仍有待完全理解。在这项研究中,骨骼肌特异性敲除(mKO)小鼠表现出较低的肌肉质量,伴有失调的巨自噬/自噬和萎缩信号,包括降低 AMP 激活的蛋白激酶(AMPK)对 ULK1(自噬激活激酶 1;丝氨酸 555)和 FOXO3(叉头盒 O3;丝氨酸 588)的特异性磷酸化,以及 MTOR(雷帕霉素的靶蛋白激酶)诱导的 ULK1(丝氨酸 757)抑制,以及 AKT/蛋白激酶 B 对 FOXO1(丝氨酸 256)和 FOXO3(丝氨酸 253)的特异性抑制。除了骨骼肌中较低的线粒体自噬和自噬通量外,mKO 还导致线粒体 PRKN/ parkin 积累增加,这表明 CARM1 是基础线粒体周转和自噬清除所必需的。缺失还引起了 PPARGC1A(PPARG 共激活因子 1α)的活性和更慢、更氧化的肌肉表型。因此,这些 mKO 引起的适应在禁食期间破坏了自噬和自噬诱导,并共同减轻了饥饿引起的肌肉萎缩。此外,在人类禁食实验中肌肉萎缩的阈值时,骨骼肌 CARM1 活性与我们在小鼠中的观察结果相似地降低,并且伴随着 ULK1(丝氨酸 757)的特异性激活,突出了甲基转移酶在人类骨骼肌中的转化影响。总之,我们的结果表明,CARM1 控制着维持和重塑肌肉质量所必需的有丝分裂、自噬和萎缩过程。靶向该酶可能为减轻骨骼肌萎缩提供新的治疗方法。