Suppr超能文献

ST-GAN:一种基于 Swin Transformer 的生成对抗网络,用于跨模态心脏分割的无监督领域自适应。

ST-GAN: A Swin Transformer-Based Generative Adversarial Network for Unsupervised Domain Adaptation of Cross-Modality Cardiac Segmentation.

出版信息

IEEE J Biomed Health Inform. 2024 Feb;28(2):893-904. doi: 10.1109/JBHI.2023.3336965. Epub 2024 Feb 5.

Abstract

Unsupervised domain adaptation (UDA) methods have shown great potential in cross-modality medical image segmentation tasks, where target domain labels are unavailable. However, the domain shift among different image modalities remains challenging, because the conventional UDA methods are based on convolutional neural networks (CNNs), which tend to focus on the texture of images and cannot establish the global semantic relevance of features due to the locality of CNNs. This paper proposes a novel end-to-end Swin Transformer-based generative adversarial network (ST-GAN) for cross-modality cardiac segmentation. In the generator of ST-GAN, we utilize the local receptive fields of CNNs to capture spatial information and introduce the Swin Transformer to extract global semantic information, which enables the generator to better extract the domain-invariant features in UDA tasks. In addition, we design a multi-scale feature fuser to sufficiently fuse the features acquired at different stages and improve the robustness of the UDA network. We extensively evaluated our method with two cross-modality cardiac segmentation tasks on the MS-CMR 2019 dataset and the M&Ms dataset. The results of two different tasks show the validity of ST-GAN compared with the state-of-the-art cross-modality cardiac image segmentation methods.

摘要

无监督领域自适应 (UDA) 方法在跨模态医学图像分割任务中表现出巨大的潜力,在这些任务中,目标域标签不可用。然而,不同图像模态之间的域转移仍然具有挑战性,因为传统的 UDA 方法基于卷积神经网络 (CNN),由于 CNN 的局部性,它们往往侧重于图像的纹理,并且无法建立特征的全局语义相关性。本文提出了一种新颖的基于 Swin Transformer 的生成对抗网络 (ST-GAN) 用于跨模态心脏分割。在 ST-GAN 的生成器中,我们利用 CNN 的局部感受野来捕获空间信息,并引入 Swin Transformer 来提取全局语义信息,这使得生成器能够更好地在 UDA 任务中提取不变的域特征。此外,我们设计了一个多尺度特征融合器,以充分融合不同阶段获取的特征,并提高 UDA 网络的鲁棒性。我们在 MS-CMR 2019 数据集和 M&Ms 数据集上的两个跨模态心脏分割任务中对我们的方法进行了广泛评估。两个不同任务的结果表明,与最先进的跨模态心脏图像分割方法相比,ST-GAN 是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验