Dong Didi, Zhao Xinyu, Pu Chun, Yao Yao, Zhao Bo, Tian Ge, Chang Ganggang, Yang Xiaoyu
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.
Inorg Chem. 2023 Dec 11;62(49):20528-20536. doi: 10.1021/acs.inorgchem.3c03923. Epub 2023 Nov 29.
Hybridization of metal-organic frameworks (MOFs) and homogeneous ionic liquids (ILs) endows the heterogeneous composite with high porosity and accessible multiple active sites (e.g., acidic or basic sites), which exhibits great potential in CO capture and conversion. Nevertheless, the majority of MOF composites are synthesized as powders, significantly restricting their practical applications due to inherent problems such as poor handling properties, high pressure drops, and mechanical instability. Thus, it is crucial to shape MOF composites into various monoliths that allow efficient processing, especially for industrial purposes. In this work, a hierarchical ILs@nanoMOF composite gel (H-IL@UiO-66-gel) featuring both intraparticle micropores and interparticle mesopores and multiple active sites was successfully fabricated by a two-step approach. Benefiting from the integrated advantages of the hierarchically porous MOF for enhanced mass transfer and affinity of ILs for activating CO molecules, the resultant H-IL@UiO-66-gel exhibits excellent uptake of macromolecules and catalytic activity toward CO cycloaddition with epoxides under moderate conditions, far beyond the traditional microporous IL@UiO-66-gel and unfunctionalized H-UiO-66-gel. Furthermore, the H-IL@UiO-66 composite monolith can be effortlessly separated and reused at least three times without depletion of catalytic activity. It is believed that this fabrication method for the shaping of MOF composites is highly versatile and can be extended to other types of MOFs for various application fields.
金属有机框架材料(MOFs)与均相离子液体(ILs)的杂化赋予了这种多相复合材料高孔隙率以及可利用的多个活性位点(如酸性或碱性位点),这使其在CO捕获和转化方面展现出巨大潜力。然而,大多数MOF复合材料是以粉末形式合成的,由于其存在诸如处理性能差、高压降和机械不稳定性等固有问题,严重限制了它们的实际应用。因此,将MOF复合材料成型为各种整体材料至关重要,这样能够实现高效加工,特别是对于工业用途而言。在这项工作中,通过两步法成功制备了一种具有颗粒内微孔、颗粒间介孔以及多个活性位点的分级ILs@纳米MOF复合凝胶(H-IL@UiO-66-凝胶)。得益于分级多孔MOF在增强传质方面的综合优势以及ILs对CO分子的活化亲和力,所得的H-IL@UiO-66-凝胶在中等条件下对大分子表现出优异的吸附能力以及对CO与环氧化物环加成反应的催化活性,远远超过传统的微孔IL@UiO-66-凝胶和未功能化的H-UiO-66-凝胶。此外,H-IL@UiO-66复合整体材料能够轻松分离并重复使用至少三次,且催化活性不会降低。据信,这种用于MOF复合材料成型的制备方法具有高度通用性,并且可以扩展到用于各种应用领域的其他类型MOFs。