Key Laboratory of Beijing On Regional Air Pollution Control, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
Environ Sci Pollut Res Int. 2024 Jan;31(1):1530-1542. doi: 10.1007/s11356-023-31170-8. Epub 2023 Dec 2.
In industrial applications, Pt-based catalysts for CO oxidation have the dual challenges of CO self-poisoning and SO toxicity. This study used synthetic Keggin-type HPMoO (PMA) as the site of Pt, and the Pt-MoO produced by decomposition of PMA was anchored to TiO to construct the dual-interface structure of Pt-MoO and Pt-TiO, abbreviated as Pt-P&M/TiO. Pt-0.125P&M/TiO with a molar ratio of Pt to PMA of 8:1 showed both good CO oxidation activity and SO tolerance. In the CO activity test, the CO complete conversion temperature T of Pt-0.125P&M/TiO was 113 ℃ (compared with 135 ℃ for Pt/TiO). In the SO resistance test, the conversion efficiency of Pt-0.125P&M/TiO at 170 ℃ remained at 60% after 72 h, while that of Pt/TiO was only 13%. H-TPR and XPS tests revealed that lattice oxygen provided by TiO and hydroxyl produced by MoO increased the CO reaction rate on Pt. According to the DFT theoretical calculation, the electronegative MoO attracted the d-orbital electrons of Pt, which reduced the adsorption energy of CO and SO from - 4.15 eV and - 2.54 eV to - 3.56 eV and - 1.52 eV, respectively, and further weakened the influence of strong CO adsorption and SO poisoning on the catalyst. This work explored the relationship between catalyst structure and catalyst performance and provided a feasible technical idea for the design of high-performance CO catalysts in industrial applications.
在工业应用中,用于 CO 氧化的 Pt 基催化剂面临 CO 自中毒和 SO 毒性的双重挑战。本研究使用合成的 Keggin 型 HPMoO(PMA)作为 Pt 的位点,并将 PMA 分解产生的 Pt-MoO 锚定到 TiO 上,构建了 Pt-MoO 和 Pt-TiO 的双界面结构,简称 Pt-P&M/TiO。Pt 与 PMA 的摩尔比为 8:1 的 Pt-0.125P&M/TiO 表现出良好的 CO 氧化活性和 SO 耐受性。在 CO 活性测试中,Pt-0.125P&M/TiO 的 CO 完全转化温度 T 为 113℃(相比之下,Pt/TiO 为 135℃)。在 SO 抗性测试中,Pt-0.125P&M/TiO 在 170℃下的转化率在 72 小时后仍保持在 60%,而 Pt/TiO 仅为 13%。H-TPR 和 XPS 测试表明,TiO 提供的晶格氧和 MoO 产生的羟基增加了 Pt 上 CO 的反应速率。根据 DFT 理论计算,电负性的 MoO 吸引 Pt 的 d 轨道电子,从而降低了 CO 和 SO 的吸附能,从-4.15eV 和-2.54eV 分别降低到-3.56eV 和-1.52eV,进一步减弱了强 CO 吸附和 SO 中毒对催化剂的影响。这项工作探讨了催化剂结构与催化剂性能之间的关系,为工业应用中高性能 CO 催化剂的设计提供了可行的技术思路。