Suppr超能文献

用于通过一氧化碳中毒、钙稳态失调和氧化损伤破坏线粒体的富含空位的铋基纳米片

Vacancy-Rich Bismuth-Based Nanosheets for Mitochondrial Destruction via CO Poisoning, Ca Dyshomeostasis, and Oxidative Damage.

作者信息

Zhao Yinmin, Wang Xiaoqin, He Mengting, Zeng Guicheng, Xu Zhigang, Zhang Lei, Kang Yuejun, Xue Peng

机构信息

School of Materials and Energy, Southwest University, Chongqing, 400715, China.

State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China.

出版信息

Small. 2024 May;20(18):e2307404. doi: 10.1002/smll.202307404. Epub 2023 Dec 6.

Abstract

Mitochondria are core regulators of tumor cell homeostasis, and their damage has become an arresting therapeutic modality against cancer. Despite the development of many mitochondrial-targeted pharmaceutical agents, the exploration of more powerful and multifunctional medications is still underway. Herein, oxygen vacancy-rich BiO wrapped with CaCO (named BiO@CaCO/PEG, BCP) is developed for full-fledged attack on mitochondrial function. After endocytosis of BCP by tumor cells, the CaCO shell can be decomposed in the acidic lysosomal compartment, leading to immediate Ca release and CO production in the cytoplasm. Near-infrared irradiation enhances the adsorption of CO onto BiO defects, which enables highly efficient photocatalysis of CO-to-CO. Meanwhile, such BiO nanosheets possess catalase-, peroxidase- and oxidase-like catalytic activities under acidic pH conditions, allowing hypoxia relief and the accumulation of diverse reactive oxygen species (ROS) in the tumor microenvironment. Ca overload-induced ion dyshomeostasis, CO-mediated respiratory chain poisoning, ROS-triggered oxidative stress aggravation, and cytosolic hyperoxia can cause severe mitochondrial disorders, which further lead to type I cell death in carcinoma. Not only does BCP cause irreversible apoptosis, but immunogenic cell death is simultaneously triggered to activate antitumor immunity for metastasis inhibition. Collectively, this platform promises high benefits in malignant tumor therapy and may expand the medical applications of bismuth-based nanoagents.

摘要

线粒体是肿瘤细胞内稳态的核心调节因子,其损伤已成为一种引人注目的癌症治疗方式。尽管已经开发了许多线粒体靶向药物,但更强大、多功能药物的探索仍在进行中。在此,开发了一种包裹有碳酸钙的富氧空位BiO(命名为BiO@CaCO/PEG,BCP),用于全面攻击线粒体功能。肿瘤细胞内吞BCP后,碳酸钙外壳可在酸性溶酶体区室中分解,导致细胞质中立即释放钙离子并产生二氧化碳。近红外照射增强了二氧化碳在BiO缺陷上的吸附,从而实现了二氧化碳到一氧化碳的高效光催化。同时,这种BiO纳米片在酸性pH条件下具有过氧化氢酶、过氧化物酶和氧化酶样催化活性,可缓解缺氧并在肿瘤微环境中积累多种活性氧(ROS)。钙超载引起的离子稳态失调、一氧化碳介导的呼吸链中毒、ROS引发的氧化应激加剧以及细胞质高氧可导致严重的线粒体紊乱,进而导致癌细胞发生I型细胞死亡。BCP不仅会导致不可逆的细胞凋亡,还会同时引发免疫原性细胞死亡以激活抗肿瘤免疫,从而抑制转移。总的来说,该平台在恶性肿瘤治疗中具有很大的优势,可能会拓展铋基纳米制剂的医学应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验