Suppr超能文献

[Co Se (PEt ) ]超原子中的电子与自旋离域

Electron and Spin Delocalization in [Co Se (PEt ) ] Superatoms.

作者信息

Xu Yunyao, Chen Jia, Aydt Alexander P, Zhang Lichirui, Sergeyev Ivan, Keeler Eric G, Choi Bonnie, He Shoushou, Reichman David R, Friesner Richard A, Nuckolls Colin, Steigerwald Michael L, Roy Xavier, McDermott Ann E

机构信息

Department of Chemistry, Columbia University New York, New York, 10027, USA.

出版信息

Chemphyschem. 2024 Jan 15;25(2):e202300064. doi: 10.1002/cphc.202300064. Epub 2023 Dec 6.

Abstract

Molecular clusters can function as nanoscale atoms/superatoms, assembling into superatomic solids, a new class of solid-state materials with designable properties through modifications on superatoms. To explore possibilities on diversifying building blocks, here we thoroughly studied one representative superatom, Co Se (PEt ) . We probed its structural, electronic, and magnetic properties and revealed its detailed electronic structure as valence electrons delocalize over inorganic [Co Se ] core while ligands function as an insulated shell. Co SSNMR measurements on the core and P, C on the ligands show that the neutral Co Se (PEt ) is diamagnetic and symmetric, with all ligands magnetically equivalent. Quantum computations cross-validate NMR results and reveal degenerate delocalized HOMO orbitals, indicating aromaticity. Ligand substitution keeps the inorganic core nearly intact. After losing one electron, the unpaired electron in [Co Se (PEt ) ] is delocalized, causing paramagnetism and a delocalized electron spin. Notably, this feature of electron/spin delocalization over a large cluster is attractive for special single-electron devices.

摘要

分子簇可作为纳米级原子/超原子发挥作用,组装成超原子固体,这是一类新型的固态材料,可通过对超原子进行修饰来设计其性能。为了探索构建单元多样化的可能性,我们在此深入研究了一种具有代表性的超原子Co Se (PEt ) 。我们探究了其结构、电子和磁性性质,并揭示了其详细的电子结构,即价电子在无机[Co Se ]核上离域,而配体则起到绝缘壳的作用。对核进行的Co SSNMR测量以及对配体上的P、C进行的测量表明,中性的Co Se (PEt ) 是抗磁性且对称的,所有配体在磁性上是等效的。量子计算交叉验证了NMR结果,并揭示了简并的离域HOMO轨道,表明具有芳香性。配体取代使无机核几乎保持完整。失去一个电子后,[Co Se (PEt ) ]中的未成对电子离域,导致顺磁性和离域电子自旋。值得注意的是,这种电子/自旋在大簇上离域的特性对于特殊的单电子器件具有吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验