Snopiński Przemysław, Matus Krzysztof, Hilšer Ondřej
Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44-100 Gliwice, Poland.
Materials Research Laboratory, Silesian University of Technology, 18A Konarskiego Street, 44-100 Gliwice, Poland.
Materials (Basel). 2023 Nov 29;16(23):7418. doi: 10.3390/ma16237418.
In this paper, we present a complete characterization of the microstructural changes that occur in an LPBF AlSi10Mg alloy subjected to various post-processing methods, including equal-channel angular pressing (ECAP), KoBo extrusion, and multi-axial forging. Kikuchi transmission diffraction and transmission electron microscopy were used to examine the microstructures. Our findings revealed that multi-axis forging produced an extremely fine subgrain structure. KoBo extrusion resulted in a practically dislocation-free microstructure. ECAP processing at temperatures between 100 °C and 200 °C generated moderate grain refinement, with subgrain diameters averaging from 300 nm to 700 nm. The obtained data highlighted the potential of severe plastic deformation as a versatile method for tailoring the microstructure of the AlSi10Mg alloy. The ability to precisely control grain size and dislocation density using specific SPD methods allows for the development of novel materials with ultrafine-grained microstructures that offer the potential for enhanced mechanical and functional properties.
在本文中,我们全面描述了经各种后处理方法(包括等径角挤压(ECAP)、KoBo挤压和多轴锻造)处理的激光粉末床熔融(LPBF)AlSi10Mg合金中发生的微观结构变化。采用菊池透射衍射和透射电子显微镜对微观结构进行了研究。我们的研究结果表明,多轴锻造产生了极其细小的亚晶粒结构。KoBo挤压导致了几乎无位错的微观结构。在100℃至200℃之间的温度下进行ECAP处理产生了适度的晶粒细化,亚晶粒直径平均为300纳米至700纳米。所获得的数据突出了严重塑性变形作为一种通用方法来定制AlSi10Mg合金微观结构的潜力。使用特定的严重塑性变形(SPD)方法精确控制晶粒尺寸和位错密度的能力,使得开发具有超细晶粒微观结构的新型材料成为可能,这些材料具有增强机械性能和功能特性的潜力。