Kuramochi Yui, Tajima Hiroyasu
Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan.
Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
Phys Rev Lett. 2023 Nov 24;131(21):210201. doi: 10.1103/PhysRevLett.131.210201.
The Wigner-Araki-Yanase (WAY) theorem states that additive conservation laws imply the commutativity of exactly implementable projective measurements and the conserved observables of the system. Known proofs of this theorem are only restricted to bounded or discrete-spectrum conserved observables of the system and are not applicable to unbounded and continuous observables like a momentum operator. In this Letter, we present the WAY theorem for possibly unbounded and continuous conserved observables under the Yanase condition, which requires that the probe positive operator-valued measure should commute with the conserved observable of the probe system. As a result of this WAY theorem, we show that exact implementations of the projective measurement of the position under momentum conservation and of the quadrature amplitude using linear optical instruments and photon counters are impossible. We also consider implementations of unitary channels under conservation laws and find that the conserved observable L_{S} of the system commutes with the implemented unitary U_{S} if L_{S} is semibounded, while U_{S}^{†}L_{S}U_{S} can shift up to possibly nonzero constant factor if the spectrum of L_{S} is upper and lower unbounded. We give simple examples of the latter case, where L_{S} is a momentum operator.
维格纳-荒木-柳濑(WAY)定理表明,加法守恒定律意味着精确可实现的投影测量与系统的守恒可观测量可交换。该定理已知的证明仅局限于系统中具有有界或离散谱的守恒可观测量,并不适用于像动量算符这样的无界且连续的可观测量。在本信函中,我们给出了在柳濑条件下适用于可能无界且连续的守恒可观测量的WAY定理,该条件要求探测正算符值测度应与探测系统的守恒可观测量可交换。作为此WAY定理的一个结果,我们表明在动量守恒下对位置进行投影测量以及使用线性光学仪器和光子计数器对正交振幅进行投影测量都不可能精确实现。我们还考虑了守恒定律下酉信道的实现情况,发现如果系统的守恒可观测量(L_{S})是半有界的,那么它与所实现的酉算符(U_{S})可交换;而如果(L_{S})的谱是上下无界的,那么(U_{S}^{\dagger}L_{S}U_{S})最多可移动一个可能非零的常数因子。我们给出了后一种情况的简单示例,其中(L_{S})是一个动量算符。