文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

视觉Transformer:基于深度学习的眼科图像分析的新前沿。

Vision transformers: The next frontier for deep learning-based ophthalmic image analysis.

作者信息

Wu Jo-Hsuan, Koseoglu Neslihan D, Jones Craig, Liu T Y Alvin

机构信息

Department of Ophthalmology, Shiley Eye Institute and Viterbi Family, University of California, San Diego, La Jolla, CA, USA.

Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Saudi J Ophthalmol. 2023 Jul 14;37(3):173-178. doi: 10.4103/sjopt.sjopt_91_23. eCollection 2023 Jul-Sep.


DOI:10.4103/sjopt.sjopt_91_23
PMID:38074310
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10701151/
Abstract

Deep learning is the state-of-the-art machine learning technique for ophthalmic image analysis, and convolutional neural networks (CNNs) are the most commonly utilized approach. Recently, vision transformers (ViTs) have emerged as a promising approach, one that is even more powerful than CNNs. In this focused review, we summarized studies that applied ViT-based models to analyze color fundus photographs and optical coherence tomography images. Overall, ViT-based models showed robust performances in the grading of diabetic retinopathy and glaucoma detection. While some studies demonstrated that ViTs were superior to CNNs in certain contexts of use, it is unclear how widespread ViTs will be adopted for ophthalmic image analysis, since ViTs typically require even more training data as compared to CNNs. The studies included were identified from the PubMed and Google Scholar databases using keywords relevant to this review. Only original investigations through March 2023 were included.

摘要

深度学习是用于眼科图像分析的最先进的机器学习技术,卷积神经网络(CNNs)是最常用的方法。最近,视觉Transformer(ViTs)已成为一种很有前景的方法,一种比CNN更强大的方法。在这篇重点综述中,我们总结了应用基于ViT的模型来分析彩色眼底照片和光学相干断层扫描图像的研究。总体而言,基于ViT的模型在糖尿病视网膜病变分级和青光眼检测方面表现出强大的性能。虽然一些研究表明,在某些使用场景中,ViTs优于CNNs,但尚不清楚ViTs在眼科图像分析中的应用会有多广泛,因为与CNNs相比,ViTs通常需要更多的训练数据。纳入的研究是从PubMed和谷歌学术数据库中使用与本综述相关的关键词识别出来的。仅纳入截至2023年3月的原始研究。

相似文献

[1]
Vision transformers: The next frontier for deep learning-based ophthalmic image analysis.

Saudi J Ophthalmol. 2023-7-14

[2]
Comparative Analysis of Vision Transformers and Conventional Convolutional Neural Networks in Detecting Referable Diabetic Retinopathy.

Ophthalmol Sci. 2024-5-17

[3]
BUViTNet: Breast Ultrasound Detection via Vision Transformers.

Diagnostics (Basel). 2022-11-1

[4]
Multi-Dataset Comparison of Vision Transformers and Convolutional Neural Networks for Detecting Glaucomatous Optic Neuropathy from Fundus Photographs.

Bioengineering (Basel). 2023-10-30

[5]
Deep learning for mango leaf disease identification: A vision transformer perspective.

Heliyon. 2024-8-22

[6]
Comparison between vision transformers and convolutional neural networks to predict non-small lung cancer recurrence.

Sci Rep. 2023-11-23

[7]
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers.

Front Genet. 2022-2-24

[8]
Towards Transferable Adversarial Attacks on Image and Video Transformers.

IEEE Trans Image Process. 2023

[9]
Vision Transformer-based recognition of diabetic retinopathy grade.

Med Phys. 2021-12

[10]
Data-Efficient Training of Pure Vision Transformers for the Task of Chest X-ray Abnormality Detection Using Knowledge Distillation.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

引用本文的文献

[1]
Advancing Diabetic Retinopathy Screening: A Systematic Review of Artificial Intelligence and Optical Coherence Tomography Angiography Innovations.

Diagnostics (Basel). 2025-3-15

[2]
Application of artificial intelligence in glaucoma care: An updated review.

Taiwan J Ophthalmol. 2024-9-13

[3]
Using Deep Learning to Distinguish Highly Malignant Uveal Melanoma from Benign Choroidal Nevi.

J Clin Med. 2024-7-16

[4]
Ophthalmology's new horizon: Moving from reactive care to proactive artificial intelligence solutions.

Saudi J Ophthalmol. 2023-10-19

本文引用的文献

[1]
GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images.

IEEE Trans Med Imaging. 2023-6

[2]
MyopiaDETR: End-to-end pathological myopia detection based on transformer using 2D fundus images.

Front Neurosci. 2023-2-7

[3]
Automated Detection of Posterior Vitreous Detachment on OCT Using Computer Vision and Deep Learning Algorithms.

Ophthalmol Sci. 2022-11-11

[4]
Classification of Diabetic Retinopathy Severity in Fundus Images Using the Vision Transformer and Residual Attention.

Comput Intell Neurosci. 2023

[5]
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images.

Sci Rep. 2023-1-10

[6]
Structure-Oriented Transformer for retinal diseases grading from OCT images.

Comput Biol Med. 2023-1

[7]
Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization.

Ophthalmol Sci. 2022-10-19

[8]
Detection of Nonexudative Macular Neovascularization on Structural OCT Images Using Vision Transformers.

Ophthalmol Sci. 2022-7-8

[9]
CoT-XNet: contextual transformer with Xception network for diabetic retinopathy grading.

Phys Med Biol. 2022-12-6

[10]
FunSwin: A deep learning method to analysis diabetic retinopathy grade and macular edema risk based on fundus images.

Front Physiol. 2022-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索