Suppr超能文献

评估基于深度学习的自动心房颤动算法的泛化能力。

Assessing the Generalizability of a Deep Learning-based Automated Atrial Fibrillation Algorithm.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-6. doi: 10.1109/EMBC40787.2023.10341108.

Abstract

Automated detection of atrial fibrillation (AF) from electrocardiogram (ECG) traces remains a challenging task and is crucial for telemonitoring of patients after stroke. This study aimed to quantify the generalizability of a deep learning (DL)-based automated ECG classification algorithm. We first developed a novel hybrid DL (HDL) model using the PhysioNet/CinC Challenge 2017 (CinC2017) dataset (publicly available) that can classify the ECG recordings as one of four classes: normal sinus rhythm (NSR), AF, other rhythms (OR), and too noisy (TN) recordings. The (pre)trained HDL was then used to classify 636 ECG samples collected by our research team using a handheld ECG device, CONTEC PM10 Portable ECG Monitor, from 102 (age: 68 ± 15 years, 74 male) outpatients of the Eastern Heart Clinic and inpatients in the Cardiology ward of Prince of Wales Hospital, Sydney, Australia. The proposed HDL model achieved average test F-score of 0.892 for NSR, AF, and OR, relative to the reference values, on the CinC2017 dataset. The HDL model also achieved an average F-score of 0.722 (AF: 0.905, NSR: 0.791, OR: 0.471 and TN: 0.342) on the dataset created by our research team. After retraining the HDL model on this dataset using a 5-fold cross validation method, the average F-score increased to 0.961. We finally conclude that the generalizability of the HDL-based algorithm developed for AF detection from short-term single-lead ECG traces is acceptable. However, the accuracy of the pre-trained DL model was significantly improved by retraining the model parameters on the new dataset of ECG traces.

摘要

从心电图 (ECG) 迹线中自动检测心房颤动 (AF) 仍然是一项具有挑战性的任务,对于中风后患者的远程监测至关重要。本研究旨在量化基于深度学习 (DL) 的自动 ECG 分类算法的泛化能力。我们首先使用 PhysioNet/CinC 挑战赛 2017 数据集 (可公开获取) 开发了一种新型混合 DL (HDL) 模型,该模型可以将 ECG 记录分类为以下四个类别之一:正常窦性节律 (NSR)、AF、其他节律 (OR) 和噪声太大 (TN) 记录。然后,使用预训练的 HDL 对我们的研究团队使用 CONTEC PM10 便携式 ECG 监测仪从澳大利亚悉尼的 Eastern Heart Clinic 的 102 名(年龄:68 ± 15 岁,74 名男性)门诊患者和心脏病病房的住院患者收集的 636 个 ECG 样本进行分类。与参考值相比,所提出的 HDL 模型在 CinC2017 数据集上实现了 NSR、AF 和 OR 的平均测试 F-score 为 0.892。HDL 模型在我们的研究团队创建的数据集上也实现了平均 F-score 为 0.722(AF:0.905,NSR:0.791,OR:0.471 和 TN:0.342)。使用 5 折交叉验证方法对该数据集重新训练 HDL 模型后,平均 F-score 增加到 0.961。最后,我们得出结论,从短期单导联 ECG 迹线中检测 AF 的基于 HDL 的算法的泛化能力是可以接受的。然而,通过在新的 ECG 迹线数据集上重新训练模型参数,预训练的 DL 模型的准确性得到了显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验