Suppr超能文献

使用随机森林回归算法估算地中海食物图像的重量。

Weight Estimation of Mediterranean Food Images using Random Forest Regression Algorithm.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340040.

Abstract

The daily nutrition management is one of the most important issues that concern individuals in the modern lifestyle. Over the years, the development of dietary assessment systems and applications based on food images has assisted experts to manage people's nutritional facts and eating habits. In these systems, the food volume estimation is the most important task for calculating food quantity and nutritional information. In this study, we present a novel methodology for food weight estimation based on a food image, using the Random Forest regression algorithm. The weight estimation model was trained on a unique dataset of 5,177 annotated Mediterranean food images, consisting of 50 different foods with a reference card placed next to the plate. Then, we created a data frame of 6,425 records from the annotated food images with features such as: food area, reference object area, food id, food category and food weight. Finally, using the Random Forest regression algorithm and applying nested cross validation and hyperparameters tuning, we trained the weight estimation model. The proposed model achieves 22.6 grams average difference between predicted and real weight values for each food item record in the data frame and 15.1% mean absolute percentage error for each food item, opening new perspectives in food image-based volume and nutrition estimation models and systems.Clinical Relevance- The proposed methodology is suitable for healthcare systems and applications that monitor an individual's malnutrition, offering the ability to estimate the energy and nutrients consumed using an image of the meal.

摘要

日常营养管理是现代生活方式中个人最关心的问题之一。多年来,基于食物图像的膳食评估系统和应用程序的发展帮助专家管理人们的营养事实和饮食习惯。在这些系统中,食物量估计是计算食物量和营养信息的最重要任务。在本研究中,我们提出了一种基于食物图像的食物重量估计的新方法,使用随机森林回归算法。重量估计模型在一个独特的 5177 个注释的地中海食物图像数据集上进行了训练,其中包含 50 种不同的食物,旁边放有参考卡。然后,我们从注释的食物图像创建了一个 6425 条记录的数据框,其中包含特征,例如:食物面积、参考对象面积、食物 ID、食物类别和食物重量。最后,使用随机森林回归算法并应用嵌套交叉验证和超参数调整,我们训练了重量估计模型。该模型在数据框中的每个食物项目记录中实现了 22.6 克的预测重量与实际重量之间的平均差异,并且对于每个食物项目的平均绝对百分比误差为 15.1%,为基于食物图像的体积和营养估计模型和系统开辟了新的视角。临床相关性- 该方法适用于监测个体营养不良的医疗保健系统和应用程序,能够使用膳食的图像估计所消耗的能量和营养。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验