Suppr超能文献

利用信号分解技术对单通道脑电图采用伪迹子空间重构方法

Adapting Artifact Subspace Reconstruction Method for SingleChannel EEG using Signal Decomposition Techniques.

作者信息

Kaongoen Netiwit, Jo Sungho

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340077.

Abstract

Artifact removal from electroencephalography (EEG) data is a crucial step in the analysis of neural signals. One method that has been gaining popularity in recent years is Artifact Subspace Reconstruction (ASR), which is highly effective in eliminating large amplitude and transient artifacts in EEG data. However, traditional ASR is not possible to use with single-channel EEG data. In this study, we propose incorporating signal decomposition techniques such as ensemble empirical mode decomposition (EEMD), wavelet transform (WT), and singular spectrum analysis (SSA) into ASR, to decompose single-channel data into multiple components. This allows the ASR process to be applied effectively to the data. Our results show that the proposed single-channel version of ASR outperforms its counterpart Independent Component Analysis (ICA) methods when tested on two open datasets. Our findings indicate that ASR has significant potential as a powerful tool for removing artifacts from EEG data analysis.Clinical Relevance- This provided artifact removal technique for single-channel EEG.

摘要

从脑电图(EEG)数据中去除伪迹是神经信号分析中的关键步骤。近年来越来越受欢迎的一种方法是伪迹子空间重建(ASR),它在消除EEG数据中的大幅度瞬态伪迹方面非常有效。然而,传统的ASR无法用于单通道EEG数据。在本研究中,我们建议将诸如总体经验模态分解(EEMD)、小波变换(WT)和奇异谱分析(SSA)等信号分解技术纳入ASR,以将单通道数据分解为多个分量。这使得ASR过程能够有效地应用于数据。我们的结果表明,在两个公开数据集上进行测试时,所提出的单通道版本的ASR优于其对应的独立成分分析(ICA)方法。我们的研究结果表明,ASR作为从EEG数据分析中去除伪迹的强大工具具有巨大潜力。临床相关性——这为单通道EEG提供了伪迹去除技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验