Suppr超能文献

用于全固态锂聚合物电池的含紫精的混合固体聚合物电解质的电化学性能增强

Enhanced Electrochemical Performance of Hybrid Solid Polymer Electrolytes Encompassing Viologen for All-Solid-State Lithium Polymer Batteries.

作者信息

Angulakhsmi Natarajan, Ambrose Bebin, Sathya Swamickan, Kathiresan Murugavel, Lingua Gabriele, Ferrari Stefania, Gowd Erathimmanna Bhoje, Wang Wenyang, Shen Cai, Elia Giuseppe Antonio, Gerbaldi Claudio, Stephan Arul Manuel

机构信息

Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences. 1219 Zhongguan Road, Zhenhai District, Ningbo, Zhejiang 315201, China.

CSIR- Central Electrochemical Research Institute, Karaikudi 630 003, India.

出版信息

ACS Mater Au. 2023 Jul 26;3(5):528-539. doi: 10.1021/acsmaterialsau.3c00010. eCollection 2023 Sep 13.

Abstract

Hybrid solid polymer electrolytes (HSPE) comprising poly(ethylene oxide) (PEO), LiTFSI, barium titanate (BaTiO), and viologen are prepared by a facile hot press. The physical properties of the HSPE membranes are studied by using small-angle and wide-angle X-ray scattering, thermogravimetric analysis, differential scanning calorimetry, and tensile strength. The prepared hybrid solid polymer electrolytes are also investigated by means of ionic conductivity and transport number measurements. The employed analyses collectively reveal that each additive in the PEO host contributes to a specific property: LiTFSI is essential in providing ionic species, while BaTiO and viologen enhance the thermal stability, ionic conductivity, and transport number. The enhanced value in the Li-transport number of HSPE are presumably attributed to the electrostatic attraction of TFSI anions and the positive charges of viologen. Synergistically, the added BaTiO and viologen improve the electrochemical properties of HSPE for the applications in all-solid-state-lithium polymer batteries.

摘要

通过简便的热压法制备了包含聚环氧乙烷(PEO)、双三氟甲烷磺酰亚胺锂(LiTFSI)、钛酸钡(BaTiO)和紫精的混合固体聚合物电解质(HSPE)。利用小角和广角X射线散射、热重分析、差示扫描量热法和拉伸强度对HSPE膜的物理性质进行了研究。还通过离子电导率和迁移数测量对制备的混合固体聚合物电解质进行了研究。所采用的分析共同表明,PEO主体中的每种添加剂都有助于特定性能:LiTFSI对于提供离子物种至关重要,而BaTiO和紫精提高了热稳定性、离子电导率和迁移数。HSPE的锂迁移数增加的值可能归因于TFSI阴离子与紫精正电荷之间的静电吸引。协同作用下,添加的BaTiO和紫精改善了HSPE在全固态锂聚合物电池应用中的电化学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/032f/10510518/5dd12225e72b/mg3c00010_0010.jpg

相似文献

1
Enhanced Electrochemical Performance of Hybrid Solid Polymer Electrolytes Encompassing Viologen for All-Solid-State Lithium Polymer Batteries.
ACS Mater Au. 2023 Jul 26;3(5):528-539. doi: 10.1021/acsmaterialsau.3c00010. eCollection 2023 Sep 13.
2
Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries.
J Colloid Interface Sci. 2020 Apr 1;565:110-118. doi: 10.1016/j.jcis.2020.01.005. Epub 2020 Jan 7.
3
Investigating the Effects of Lithium Phosphorous Oxynitride Coating on Blended Solid Polymer Electrolytes.
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40749-40758. doi: 10.1021/acsami.0c09113. Epub 2020 Aug 27.
5
Cyclopropenium Cationic-Based Covalent Organic Polymer-Enhanced Poly(ethylene oxide) Composite Polymer Electrolyte for All-Solid-State Li-S Battery.
ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16469-16477. doi: 10.1021/acsami.1c02309. Epub 2021 Apr 5.
6
Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes.
J Colloid Interface Sci. 2021 Mar;585:596-604. doi: 10.1016/j.jcis.2020.10.039. Epub 2020 Oct 20.
9
Negatively Charged Laponite Sheets Enhanced Solid Polymer Electrolytes for Long-Cycling Lithium-Metal Batteries.
ACS Appl Mater Interfaces. 2023 Jan 25;15(3):4044-4052. doi: 10.1021/acsami.2c19157. Epub 2023 Jan 11.
10
High Performance Ternary Solid Polymer Electrolytes Based on High Dielectric Poly(vinylidene fluoride) Copolymers for Solid State Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2023 Jul 12;15(27):32301-32312. doi: 10.1021/acsami.3c03361. Epub 2023 Jun 28.

本文引用的文献

1
Influence of Additives on the Electrochemical and Interfacial Properties of SiO-Based Anode Materials for Lithium-Sulfur Batteries.
Langmuir. 2022 Mar 1;38(8):2423-2434. doi: 10.1021/acs.langmuir.1c02342. Epub 2022 Feb 15.
2
Unique Carbonate-Based Single Ion Conducting Block Copolymers Enabling High-Voltage, All-Solid-State Lithium Metal Batteries.
Macromolecules. 2021 Jul 27;54(14):6911-6924. doi: 10.1021/acs.macromol.1c00981. Epub 2021 Jul 14.
3
Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating.
ACS Appl Mater Interfaces. 2019 Aug 14;11(32):28774-28780. doi: 10.1021/acsami.9b04932. Epub 2019 Jul 30.
4
Materials for lithium-ion battery safety.
Sci Adv. 2018 Jun 22;4(6):eaas9820. doi: 10.1126/sciadv.aas9820. eCollection 2018 Jun.
5
3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries.
ACS Appl Mater Interfaces. 2018 Feb 28;10(8):7069-7078. doi: 10.1021/acsami.7b18123. Epub 2018 Feb 20.
6
SAXS Studies of TiO₂ Nanoparticles in Polymer Electrolytes and in Nanostructured Films.
Materials (Basel). 2010 Nov 22;3(11):4979-4993. doi: 10.3390/ma3114979.
7
Viologens and Their Application as Functional Materials.
Chemistry. 2017 Dec 1;23(67):16924-16940. doi: 10.1002/chem.201703348. Epub 2017 Sep 18.
8
Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries.
ACS Appl Mater Interfaces. 2017 Sep 6;9(35):29820-29828. doi: 10.1021/acsami.7b09119. Epub 2017 Aug 24.
9
Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.
Chem Rev. 2017 Aug 9;117(15):10403-10473. doi: 10.1021/acs.chemrev.7b00115. Epub 2017 Jul 28.
10
Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives.
Adv Mater. 2017 Jan;29(1). doi: 10.1002/adma.201603436. Epub 2016 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验