Chen Jiahao, Li Yaxin, Wu Xinyuan, Min Huihua, Wang Jin, Liu Xiaomin, Yang Hui
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
Electron Microscope Lab, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
J Colloid Interface Sci. 2024 Mar;657:893-902. doi: 10.1016/j.jcis.2023.12.057. Epub 2023 Dec 10.
The structure instability and cycling decay of silicon (Si) anode triggered by stress buildup hinder its practical application to next-generation high-energy-density lithium-ion batteries (LIBs). Herein, a cross-linking polymeric network as a self-healing binder for Si anode is developed by in situ polymerization of tannic acid (TA) and polyacrylic acid (PAA) binder labelled as TA-c-PAA. The branched TA as a physical cross-linker complexes with PAA main chains through abundant dynamic hydrogen bonds, endowing the cross-linking TA-c-PAA binder with unique self-healing property and strong adhesion for Si anode. Benefiting from the mechanical robust and hard adhesion, the Si@TA-c-PAA electrode exhibits high reversible specific capacities (3250 mAh/g at 0.05C (1C = 4000 mA g)), excellent rate capability (1599 mAh/g at 2C), and impressive cycling stability (1742 mAh/g at 0.25C after 450 cycles). After Ex situ morphology characterization, in situ swelling analysis, and finite element simulation, it is found that the TA-c-PAA binder allows the Si anode to dissipate stress and prevent pulverization during lithiation and delithiation, thus the hydrogen bonds among interpenetrating network may be adaptable to the stress intensity. Our work paves a new avenue for the design of efficient and cost-effective binders for next-generation Si anode in LIBs.
应力积累引发的硅(Si)负极结构不稳定和循环衰减阻碍了其在下一代高能量密度锂离子电池(LIBs)中的实际应用。在此,通过单宁酸(TA)和标记为TA-c-PAA的聚丙烯酸(PAA)粘合剂的原位聚合,开发了一种作为Si负极自愈合粘合剂的交联聚合物网络。支化的TA作为物理交联剂通过大量动态氢键与PAA主链络合,赋予交联的TA-c-PAA粘合剂独特的自愈合性能和对Si负极的强粘附力。受益于机械坚固性和强粘附力,Si@TA-c-PAA电极表现出高可逆比容量(在0.05C(1C = 4000 mA g)下为3250 mAh/g)、优异的倍率性能(在2C下为1599 mAh/g)和令人印象深刻的循环稳定性(在450次循环后在0.25C下为1742 mAh/g)。经过非原位形态表征、原位膨胀分析和有限元模拟,发现TA-c-PAA粘合剂使Si负极在锂化和脱锂过程中能够消散应力并防止粉化,因此互穿网络之间的氢键可能适应应力强度。我们的工作为设计用于下一代LIBs中Si负极的高效且经济高效的粘合剂开辟了一条新途径。