Rajeev Kavya, Vipin C K, Sajeev Anjali K, Shukla Atul, McGregor Sarah K M, Lo Shih-Chun, Namdas Ebinazar B, Narayanan Unni K N
Centre for Sustainable Energy Technologies, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695 019, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Front Optoelectron. 2023 Dec 14;16(1):46. doi: 10.1007/s12200-023-00101-3.
White organic light-emitting diodes (WOLEDs) have several desirable features, but their commercialization is hindered by the poor stability of blue light emitters and high production costs due to complicated device structures. Herein, we investigate a standard blue emitting hole transporting material (HTM) N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) and its exciplex emission upon combining with a suitable electron transporting material (ETM), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ). Blue and yellow OLEDs with simple device structures are developed by using a blend layer, NPB:TAZ, as a blue emitter as well as a host for yellow phosphorescent dopant iridium (III) bis(4-phenylthieno[3,2-c]pyridinato-N,C)acetylacetonate (PO-01). Strategic device design then exploits the ambipolar charge transport properties of tetracene as a spacer layer to connect these blue and yellow emitting units. The tetracene-linked device demonstrates more promising results compared to those using a conventional charge generation layer (CGL). Judicious choice of the spacer prevents exciton diffusion from the blue emitter unit, yet facilitates charge carrier transport to the yellow emitter unit to enable additional exciplex formation. This complementary behavior of the spacer improves the blue emission properties concomitantly yielding reasonable yellow emission. The overall white light emission properties are enhanced, achieving CIE coordinates (0.36, 0.39) and color temperature (4643 K) similar to daylight. Employing intermolecular exciplex emission in OLEDs simplifies the device architecture via its dual functionality as a host and as an emitter.
白色有机发光二极管(WOLED)具有几个理想的特性,但其商业化受到蓝光发射体稳定性差以及由于器件结构复杂导致的高生产成本的阻碍。在此,我们研究了一种标准的蓝色发光空穴传输材料(HTM)N,N'-双(萘-1-基)-N,N'-双(苯基)联苯胺(NPB)及其与合适的电子传输材料(ETM)3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑(TAZ)结合时的激基复合物发射。通过使用混合层NPB:TAZ作为蓝色发射体以及黄色磷光掺杂剂铱(III)双(4-苯基噻吩并[3,2-c]吡啶-N,C)乙酰丙酮化物(PO-01)的主体,开发了具有简单器件结构的蓝色和黄色OLED。然后,通过策略性的器件设计,利用并四苯作为间隔层的双极性电荷传输特性来连接这些蓝色和黄色发光单元。与使用传统电荷产生层(CGL)的器件相比,并四苯连接的器件展示出更有前景的结果。明智地选择间隔层可防止激子从蓝色发射体单元扩散,但有助于电荷载流子传输到黄色发射体单元,从而形成额外的激基复合物。间隔层的这种互补行为改善了蓝色发射特性,同时产生了合理的黄色发射。整体白光发射特性得到增强,实现了与日光相似的CIE坐标(0.36,0.39)和色温(4643 K)。在OLED中采用分子间激基复合物发射通过其作为主体和发射体的双重功能简化了器件结构。