Apergi Sofia, Brocks Geert, Tao Shuxia
Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
J Phys Chem Lett. 2023 Dec 28;14(51):11565-11572. doi: 10.1021/acs.jpclett.3c02705. Epub 2023 Dec 14.
Chiral metal halide perovskites have emerged as promising optoelectronic materials for the emission and detection of circularly polarized visible light. Despite chirality being realized by adding chiral organic cations or ligands, the chiroptical activity originates from the metal halide framework. The mechanism is not well understood, as an overarching modeling framework is lacking. Capturing chirality requires going beyond electric dipole transitions, which is the common approximation in condensed matter calculations. We present a density functional theory (DFT) parametrized tight-binding (TB) model, which allows us to calculate optical properties including circular dichroism (CD) at low computational cost. Comparing Pb-based chiral perovskites with different organic cations and halide anions, we find that the structural helicity within the metal halide layers determines the size of the CD. Our results mark an important step in understanding the complex correlations of structural, electronic, and optical properties of chiral perovskites and provide a useful tool to predict new compounds with desired properties for novel optoelectronic applications.
手性金属卤化物钙钛矿已成为用于发射和检测圆偏振可见光的有前途的光电子材料。尽管通过添加手性有机阳离子或配体实现了手性,但手性光学活性源自金属卤化物框架。由于缺乏一个总体的建模框架,其机制尚未得到很好的理解。捕捉手性需要超越电偶极跃迁,而电偶极跃迁是凝聚态计算中的常见近似。我们提出了一种密度泛函理论(DFT)参数化的紧束缚(TB)模型,它使我们能够以低计算成本计算包括圆二色性(CD)在内的光学性质。通过比较具有不同有机阳离子和卤化物阴离子的铅基手性钙钛矿,我们发现金属卤化物层内的结构螺旋度决定了CD的大小。我们的结果标志着在理解手性钙钛矿的结构、电子和光学性质的复杂相关性方面迈出了重要一步,并为预测具有所需性质的新化合物以用于新型光电子应用提供了一个有用的工具。