Suppr超能文献

蛋白A色谱中负载和洗脱的预测性机理建模。

Predictive mechanistic modeling of loading and elution in protein A chromatography.

作者信息

Bhoyar Soumitra, Kumar Vijesh, Foster Max, Xu Xuankuo, Traylor Steven J, Guo Jing, Lenhoff Abraham M

机构信息

Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.

Biologics Development, Bristol Myers Squibb Co, Devens, MA 01434, USA.

出版信息

J Chromatogr A. 2024 Jan 4;1713:464558. doi: 10.1016/j.chroma.2023.464558. Epub 2023 Dec 4.

Abstract

Protein A chromatography is an enabling technology in current manufacturing processes of monoclonal antibodies (mAbs) and mAb derivatives, largely due to its ability to reduce the levels of process-related impurities by several orders of magnitude. Despite its widespread application, the use of mathematical modeling capable of accurately predicting the full protein A chromatographic process, including loading, post-loading wash and elution stages, has been limited. This work describes a mechanistic modeling approach utilizing the general rate model (GRM), the capabilities of which are explored and optimized using two isotherm models. Isotherm parameters were estimated by inverse-fitting simulated breakthrough curves to experimental data at various pH values. The parameter values so obtained were interpolated across the relevant pH range using a best-fit curve, thus enabling their use in predictive modeling, including of elution over a range of pH. The model provides accurate predictions (< 3% mean error in 10% dynamic binding capacity predictions and ∼ 5% mean error in elution mass and pool volume predictions, both on scale-up) for various residence times, buffer conditions and elution schemes and its effectiveness for use in scale-up and process development is shown by applying the same parameters to larger columns and a wider range of residence times.

摘要

蛋白A层析是目前单克隆抗体(mAb)和mAb衍生物生产工艺中的一项关键技术,这主要归功于其能够将与工艺相关的杂质水平降低几个数量级。尽管其应用广泛,但能够准确预测整个蛋白A层析过程(包括上样、上样后洗涤和洗脱阶段)的数学模型的使用却很有限。这项工作描述了一种利用通用速率模型(GRM)的机理建模方法,并使用两种等温线模型对其能力进行了探索和优化。通过将模拟的穿透曲线与不同pH值下的实验数据进行反向拟合来估计等温线参数。使用最佳拟合曲线在相关pH范围内对如此获得的参数值进行插值,从而使其能够用于预测建模,包括在一系列pH值下的洗脱预测。该模型针对各种停留时间、缓冲条件和洗脱方案提供了准确的预测(放大时10%动态结合容量预测的平均误差<3%,洗脱质量和洗脱池体积预测的平均误差约为5%),并且通过将相同的参数应用于更大尺寸的柱子和更广泛的停留时间范围,展示了其在放大和工艺开发中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验