Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom.
Department of Mathematics, University College London, London WC1H 0AY, United Kingdom.
Phys Rev Lett. 2023 Dec 1;131(22):228302. doi: 10.1103/PhysRevLett.131.228302.
We study motility-induced phase separation (MIPS) in living active matter, in which cells interact through chemical signaling, or quorum sensing. In contrast to previous theories of MIPS, our multiscale continuum model accounts explicitly for genetic regulation of signal production and motility. Through analysis and simulations, we derive a new criterion for the onset of MIPS that depends on features of the genetic network. Furthermore, we identify and characterize a new type of oscillatory instability that occurs when gene regulation inside cells promotes motility in higher signal concentrations.
我们研究活细胞中由运动引起的相分离(MIPS)现象,在这种情况下,细胞通过化学信号或群体感应进行相互作用。与之前的 MIPS 理论不同,我们的多尺度连续介质模型明确考虑了信号产生和运动的遗传调控。通过分析和模拟,我们得出了一个新的 MIPS 起始准则,该准则取决于遗传网络的特征。此外,我们还确定并描述了一种新的振荡不稳定性,这种不稳定性发生在细胞内的基因调控促进更高信号浓度下的运动时。