Suppr超能文献

通过界面硅氧烷键合控制宏观摩擦

Controlling Macroscopic Friction through Interfacial Siloxane Bonding.

作者信息

Peng Liang, Hsu Chao-Chun, Xiao Chen, Bonn Daniel, Weber Bart

机构信息

Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.

出版信息

Phys Rev Lett. 2023 Dec 1;131(22):226201. doi: 10.1103/PhysRevLett.131.226201.

Abstract

Controlling macroscopic friction is crucial for numerous natural and industrial applications, ranging from forecasting earthquakes to miniaturizing semiconductor devices, but predicting and manipulating friction phenomena remains a challenge due to the unknown relationship between nanoscale and macroscopic friction. Here, we show experimentally that dry friction at multiasperity Si-on-Si interfaces is dominated by the formation of interfacial siloxane (Si─O─Si) bonds, the density of which can be precisely regulated by exposing plasma-cleaned silicon surfaces to dry nitrogen. Our results show how the bond density can be used to quantitatively understand and control the macroscopic friction. Our findings establish a unique connection between the molecular scale at which adhesion occurs, and the friction coefficient that is the key macroscopic parameter for industrial and natural tribology challenges.

摘要

控制宏观摩擦对于众多自然和工业应用至关重要,从地震预测到半导体器件的小型化,不一而足。然而,由于纳米尺度和宏观摩擦之间的关系尚不明确,预测和操纵摩擦现象仍然是一项挑战。在此,我们通过实验表明,多粗糙硅 - 硅界面处的干摩擦主要由界面硅氧烷(Si─O─Si)键的形成所主导,通过将等离子体清洁后的硅表面暴露于干燥氮气中,其键密度可得到精确调控。我们的结果展示了如何利用键密度来定量理解和控制宏观摩擦。我们的发现建立了发生粘附的分子尺度与摩擦系数之间的独特联系,而摩擦系数是工业和自然摩擦学挑战中的关键宏观参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验