Lin Fei, Voccia Maria, Odenwald Lukas, Göttker-Schnetmann Inigo, Falivene Laura, Caporaso Lucia, Mecking Stefan
Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.
Dipartimento di Chimica e Biologia, Università di Salerno, Via Papa Paolo Giovanni II, I-84084 Fisciano, Italy.
J Am Chem Soc. 2023 Dec 27;145(51):27950-27957. doi: 10.1021/jacs.3c06597. Epub 2023 Dec 16.
Recent breakthroughs in the generation of polar-functionalized and more sustainable degradable polyethylenes have been enabled by advanced phosphinephenolato Ni(II) catalysts. A key has been to overcome this type of catalysts' propensity for extensive chain transfer to enable formation of high-molecular-weight polyethylene chains. We elucidate the mechanistic origin of this paradigm shift by a combined experimental and theoretical study. Single-crystal X-ray structural analysis and cyclic voltammetry of a set of six different catalysts with variable electronics and sterics, combined with extensive pressure reactor polymerization studies, suggest that an attractive Ni-aryl interaction of a -[2-(aryl)phenyl] is responsible for the suppression of chain transfer. This differs from the established picture of steric shielding found for other prominent late transition metal catalysts. Extensive density functional theory studies identify the relevant pathways of chain growth and chain transfer and show how this attractive interaction suppresses chain transfer.
先进的膦酚镍(II)催化剂实现了极性官能化且更具可持续性的可降解聚乙烯生成方面的近期突破。关键在于克服这类催化剂广泛链转移的倾向,以实现高分子量聚乙烯链的形成。我们通过实验与理论相结合的研究阐明了这一范式转变的机理起源。对一组六种具有可变电子和空间结构的不同催化剂进行单晶X射线结构分析和循环伏安法,结合广泛的压力反应器聚合研究,表明 -[2-(芳基)苯基]的镍-芳基吸引相互作用是抑制链转移的原因。这与其他著名的后过渡金属催化剂的空间位阻屏蔽的既定情况不同。广泛的密度泛函理论研究确定了链增长和链转移的相关途径,并展示了这种吸引相互作用如何抑制链转移。