Kathiravan P, Thillaivelavan K, Viruthagiri G
Department of Physics, Periyar Arts College, Cuddalore 607 001, Tamil Nadu, India.
Department of Physics, Periyar Arts College, Cuddalore 607 001, Tamil Nadu, India.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Mar 5;308:123745. doi: 10.1016/j.saa.2023.123745. Epub 2023 Dec 12.
NiO and Cu-ion doped NiO nanoparticles with various concentrations (0.01-0.04 M) have been effectively synthesized in the current investigation using chemical precipitation method. The following techniques were used to characterized the materials' structural, morphological, elemental analysis, functional group, optical and magnetic properties: XRD, TEM, HR-TEM, SAED, SEM, EDX, FTIR, UV, PL and VSM. According to this Scherrer formula, the average crystalline sizes of the materials of pure NiO and Cu-doped NiO were determined to be 16.37 nm, 15.21 nm, 14.88 nm, 18.35 nm, and 10.88 nm, respectively. The HR-TEM images revealed that the d-spacing values about 0.24 nm, which coincides with the (111) plane of cubic NiO for pure and copper doped NiO nanoparticles. The SEM micrographs of Cu-doped NiO nanomaterials shows tiny agglomerated particles, while that of pure NiO nanoparticles shows spherical structure. Pure NiO and Cu-doped NiO nanoparticles have band gap values of 2.32 eV, 2.29 eV, 2.24 eV, 2.22 eV, and 2.27 eV, respectively. The Cu-doped NiO nanoparticles (0.01-0.03 M) at various concentrations can significantly reduce the band gap without significantly altering the structure, making them a potential material for creating optoelectronic devices. Copper was incorporated into NiO nanoparticles, which had a significant impact on the magnetic properties and changed the material from weakly ferromagnetic to ferromagnetic. In comparison to undoped NiO nanoparticles, the saturation magnetization and coercivity values of the 0.01 M and 0.03 M of Cu-doped nanoparticles is much higher. This outcome demonstrates that such Cu-doped NiO nanoparticles have promising magnetic applications.
在当前的研究中,采用化学沉淀法有效合成了不同浓度(0.01 - 0.04 M)的NiO以及铜离子掺杂的NiO纳米颗粒。使用以下技术对材料的结构、形态、元素分析、官能团、光学和磁性进行了表征:XRD、TEM、HR - TEM、SAED、SEM、EDX、FTIR、UV、PL和VSM。根据谢乐公式,确定纯NiO和铜掺杂NiO材料的平均晶体尺寸分别为16.37 nm、15.21 nm、14.88 nm、18.35 nm和10.88 nm。HR - TEM图像显示,纯NiO和铜掺杂NiO纳米颗粒的d间距值约为0.24 nm,与立方NiO的(111)面一致。铜掺杂NiO纳米材料的SEM显微照片显示出微小的团聚颗粒,而纯NiO纳米颗粒的SEM显微照片显示出球形结构。纯NiO和铜掺杂NiO纳米颗粒的带隙值分别为2.32 eV、2.29 eV、2.24 eV、2.22 eV和2.27 eV。不同浓度(0.01 - 0.03 M)的铜掺杂NiO纳米颗粒可以显著降低带隙,而不会显著改变结构,使其成为制造光电器件的潜在材料。铜被掺入NiO纳米颗粒中,这对磁性有显著影响,并使材料从弱铁磁性变为铁磁性。与未掺杂的NiO纳米颗粒相比,0.01 M和0.03 M的铜掺杂纳米颗粒的饱和磁化强度和矫顽力值要高得多。这一结果表明,这种铜掺杂NiO纳米颗粒具有广阔的磁性应用前景。