Suppr超能文献

信号转导蛋白 CIN85 的自动抑制调节 B 细胞活化。

Autoinhibition in the Signal Transducer CIN85 Modulates B Cell Activation.

机构信息

Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.

Institute for Cellular and Molecular Immunology, Georg-August University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany.

出版信息

J Am Chem Soc. 2024 Jan 10;146(1):399-409. doi: 10.1021/jacs.3c09586. Epub 2023 Dec 19.

Abstract

Signal transduction by the ligated B cell antigen receptor (BCR) depends on the preorganization of its intracellular components, such as the effector proteins SLP65 and CIN85 within phase-separated condensates. These liquid-like condensates are based on the interaction between three Src homology 3 (SH3) domains and the corresponding proline-rich recognition motifs (PRM) in CIN85 and SLP65, respectively. However, detailed information on the protein conformation and how it impacts the capability of SLP65/CIN85 condensates to orchestrate BCR signal transduction is still lacking. This study identifies a hitherto unknown intramolecular SH3:PRM interaction between the C-terminal SH3 domain (SH3C) of CIN85 and an adjacent PRM. We used high-resolution nuclear magnetic resonance (NMR) experiments to study the flexible linker region containing the PRM and determined the extent of the interaction in multidomain constructs of the protein. Moreover, we observed that the phosphorylation of a serine residue located in the immediate vicinity of the PRM regulates this intramolecular interaction. This allows for a dynamic modulation of CIN85's valency toward SLP65. B cell culture experiments further revealed that the PRM/SH3C interaction is crucial for maintaining the physiological level of SLP65/CIN85 condensate formation, activation-induced membrane recruitment of CIN85, and subsequent mobilization of Ca. Our findings therefore suggest that the intramolecular interaction with the adjacent disordered linker is effective in modulating CIN85's valency both and . This therefore constitutes a powerful way for the modulation of SLP65/CIN85 condensate formation and subsequent B cell signaling processes within the cell.

摘要

配体结合的 B 细胞抗原受体 (BCR) 的信号转导依赖于其细胞内成分的预组织,例如相分离凝聚体中的效应蛋白 SLP65 和 CIN85。这些类液凝聚体基于三个Src 同源 3 (SH3) 结构域与 CIN85 和 SLP65 中相应富含脯氨酸的识别基序 (PRM) 之间的相互作用。然而,关于蛋白质构象及其如何影响 SLP65/CIN85 凝聚体协调 BCR 信号转导能力的详细信息仍然缺乏。本研究确定了 CIN85 的 C 端 SH3 结构域 (SH3C) 与相邻 PRM 之间迄今未知的分子内 SH3:PRM 相互作用。我们使用高分辨率核磁共振 (NMR) 实验研究了含有 PRM 的柔性连接区,并确定了蛋白质多结构域构建体中相互作用的程度。此外,我们观察到位于 PRM 附近的一个丝氨酸残基的磷酸化调节这种分子内相互作用。这允许 CIN85 对 SLP65 的价态进行动态调节。B 细胞培养实验进一步表明,PRM/SH3C 相互作用对于维持 SLP65/CIN85 凝聚体形成的生理水平、CIN85 的激活诱导的膜募集以及随后的 Ca 动员至关重要。因此,我们的研究结果表明,与相邻无序连接的分子内相互作用有效地调节了 CIN85 的价态。这因此构成了在细胞内调节 SLP65/CIN85 凝聚体形成和随后的 B 细胞信号转导过程的一种有力方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a07c/10786037/2b9fcbf74ea1/ja3c09586_0001.jpg

相似文献

1
Autoinhibition in the Signal Transducer CIN85 Modulates B Cell Activation.
J Am Chem Soc. 2024 Jan 10;146(1):399-409. doi: 10.1021/jacs.3c09586. Epub 2023 Dec 19.
2
Quantitative description of the phase-separation behavior of the multivalent SLP65-CIN85 complex.
PNAS Nexus. 2024 Feb 14;3(3):pgae079. doi: 10.1093/pnasnexus/pgae079. eCollection 2024 Mar.
3
Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness.
Nat Commun. 2020 Feb 12;11(1):848. doi: 10.1038/s41467-020-14544-1.
4
The B-cell antigen receptor signals through a preformed transducer module of SLP65 and CIN85.
EMBO J. 2011 Aug 5;30(17):3620-34. doi: 10.1038/emboj.2011.251.
5
The adaptor protein CIN85 assembles intracellular signaling clusters for B cell activation.
Sci Signal. 2016 Jun 28;9(434):ra66. doi: 10.1126/scisignal.aad6275.
7
CIN85 is required for Cbl-mediated regulation of antigen receptor signaling in human B cells.
Blood. 2012 Mar 8;119(10):2263-73. doi: 10.1182/blood-2011-04-351965. Epub 2012 Jan 18.
8
Interactions between the three CIN85 SH3 domains and ubiquitin: implications for CIN85 ubiquitination.
Biochemistry. 2008 Aug 26;47(34):8937-49. doi: 10.1021/bi800439t. Epub 2008 Aug 5.
10
Multimeric and differential binding of CIN85/CD2AP with two atypical proline-rich sequences from CD2 and Cbl-b*.
FEBS J. 2013 Jul;280(14):3399-415. doi: 10.1111/febs.12333. Epub 2013 Jun 10.

引用本文的文献

1
[Latest Findings on the Role of Liquid-Liquid Phase Separation in the Regulation of Immune Cell Activation and Key Signaling].
Sichuan Da Xue Xue Bao Yi Xue Ban. 2024 Nov 20;55(6):1527-1532. doi: 10.12182/20241160302.
2
Liquid-liquid separation in gut immunity.
Front Immunol. 2024 Dec 10;15:1505123. doi: 10.3389/fimmu.2024.1505123. eCollection 2024.
3
Quantitative description of the phase-separation behavior of the multivalent SLP65-CIN85 complex.
PNAS Nexus. 2024 Feb 14;3(3):pgae079. doi: 10.1093/pnasnexus/pgae079. eCollection 2024 Mar.

本文引用的文献

1
Quantitative description of the phase-separation behavior of the multivalent SLP65-CIN85 complex.
PNAS Nexus. 2024 Feb 14;3(3):pgae079. doi: 10.1093/pnasnexus/pgae079. eCollection 2024 Mar.
2
How phosphorylation impacts intrinsically disordered proteins and their function.
Essays Biochem. 2022 Dec 16;66(7):901-913. doi: 10.1042/EBC20220060.
4
Estimation of Effective Concentrations Enforced by Complex Linker Architectures from Conformational Ensembles.
Biochemistry. 2022 Feb 1;61(3):171-182. doi: 10.1021/acs.biochem.1c00737. Epub 2022 Jan 21.
6
Combined High-Pressure and Multiquantum NMR and Molecular Simulation Propose a Role for N-Terminal Salt Bridges in Amyloid-Beta.
J Phys Chem Lett. 2021 Oct 14;12(40):9933-9939. doi: 10.1021/acs.jpclett.1c02595. Epub 2021 Oct 7.
7
Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem.
Front Mol Biosci. 2021 Jul 28;8:729513. doi: 10.3389/fmolb.2021.729513. eCollection 2021.
8
PI3Kδ Forms Distinct Multiprotein Complexes at the TCR Signalosome in Naïve and Differentiated CD4 T Cells.
Front Immunol. 2021 Mar 8;12:631271. doi: 10.3389/fimmu.2021.631271. eCollection 2021.
9
Predicting the effect of disordered linkers on effective concentrations and avidity with the "C calculator" app.
Methods Enzymol. 2021;647:145-171. doi: 10.1016/bs.mie.2020.09.012. Epub 2020 Nov 13.
10
The Global Phosphorylation Landscape of SARS-CoV-2 Infection.
Cell. 2020 Aug 6;182(3):685-712.e19. doi: 10.1016/j.cell.2020.06.034. Epub 2020 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验