Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
Biomacromolecules. 2024 Jan 8;25(1):119-133. doi: 10.1021/acs.biomac.3c00863. Epub 2023 Dec 19.
The development of copolymerization techniques that can randomly incorporate biodegradable moieties into the hyperbranched polyglycerol backbone is an option to prevent its bioaccumulation in vivo. In this study, redox-responsive and biocompatible hyperbranched polyglycerol copolymers of glycidol and 1,4,5-oxadithiepan-2-one were synthesized with an adjustable molecular weight and a defined disulfide bond content through anionic and coordination-insertion ring-opening polymerization. A truly random incorporation of the monomers was achieved under both copolymerization mechanisms. The copolymers were further characterized in terms of their aggregation behavior in solution, degradability, in vitro cell viability, and blood compatibility for potential future biomedical applications. Transmission electron microscopy revealed that the copolymer assembled into nanoparticles with a size range of 20 nm. The copolymers underwent degradation when incubated with two different reducing agents, resulting in smaller fragments of the polymer with thiol end groups. The copolymers demonstrated good biocompatibility, making them suitable for further investigation in biomedical applications.
开发能够将可生物降解部分随机掺入超支化聚甘油主链的共聚技术是防止其在体内生物积累的一种选择。在这项研究中,通过阴离子和配位插入开环聚合,合成了具有可调节分子量和定义的二硫键含量的氧化还原响应和生物相容的环氧丙烷和 1,4,5-恶二噻烷-2-酮的超支化聚甘油共聚物。在两种共聚机制下,均实现了单体的真正随机掺入。进一步根据共聚物在溶液中的聚集行为、可降解性、体外细胞活力和血液相容性对其进行了表征,以用于潜在的未来生物医学应用。透射电子显微镜显示,共聚物组装成 20nm 大小范围的纳米粒子。当与两种不同的还原剂一起孵育时,共聚物发生降解,形成具有巯基端基的聚合物较小片段。共聚物表现出良好的生物相容性,使其适合于在生物医学应用中进一步研究。