Biodiscovery Institute, School of Pharmacy, University Park, Nottingham NG7 2RD, U.K.
Croda Europe Ltd, Cowick Hall, Snaith DN14 9AA, U.K.
J Chem Inf Model. 2024 Jan 8;64(1):265-275. doi: 10.1021/acs.jcim.3c01898. Epub 2023 Dec 19.
Excipients are included within protein biotherapeutic solution formulations to improve colloidal and conformational stability but are generally not designed for the specific purpose of preventing aggregation and improving cryoprotection in solution. In this work, we have explored the relationship between the structure and antiaggregation activity of excipients by utilizing coarse-grained molecular dynamics modeling of protein-excipient interaction. We have studied human serum albumin as a model protein, and we report the interaction of 41 excipients (polysorbates, fatty alcohol ethoxylates, fatty acid ethoxylates, phospholipids, glucosides, amino acids, and others) in terms of the reduction of solvent accessible surface area of aggregation-prone regions, proposed as a mechanism of aggregation prevention. Polyoxyethylene sorbitan had the greatest degree of interaction with aggregation-prone regions, decreasing the solvent accessible surface area of APRs by 20.7 nm (40.1%). Physicochemical descriptors generated by Mordred are employed to probe the structure-property relationship using partial least-squares regression. A leave-one-out cross-validated model had a root-mean-square error of prediction of 4.1 nm and a mean relative error of prediction of 0.077. Generally, longer molecules with a large number of alcohol-terminated PEG units tended to interact more, with qualitatively different protein interactions, wrapping around the protein. Shorter or less ethoxylated compounds tend to form hemimicellar clusters at the protein surface. We propose that an improved design would feature many short chains of 5 to 10 PEG units in many distinct branches and at least some hydrophobic content in the form of medium-length or greater aliphatic chains (i.e., six or more carbon atoms). The combination of molecular dynamics simulation and quantitative modeling is an important first step in an all-purpose protein-independent model for the computer-aided design of stabilizing excipients.
辅料被包含在蛋白质生物治疗溶液制剂中以提高胶体和构象稳定性,但通常不是为了防止聚集和提高溶液中的抗冷冻保护作用而专门设计的。在这项工作中,我们通过利用蛋白质-辅料相互作用的粗粒度分子动力学模拟,探索了辅料的结构与抗聚集活性之间的关系。我们以人血清白蛋白为模型蛋白,报告了 41 种辅料(聚山梨酯、脂肪醇乙氧基化物、脂肪酸乙氧基化物、磷脂、糖苷、氨基酸等)的相互作用,以降低易于聚集的区域的溶剂可及表面积,这被提出作为一种防止聚集的机制。聚氧乙烯山梨醇与易于聚集的区域相互作用最大,使 APR 的溶剂可及表面积减少了 20.7nm(40.1%)。Mordred 生成的物理化学描述符被用于使用偏最小二乘回归探测结构-性质关系。一个留一法交叉验证模型的预测均方根误差为 4.1nm,预测平均相对误差为 0.077。通常,具有大量醇端 PEG 单元的长分子往往相互作用更强,与蛋白质的相互作用性质不同,会包裹在蛋白质周围。较短或较少乙氧基化的化合物往往在蛋白质表面形成半胶束簇。我们提出,改进的设计将具有许多 5 到 10 个 PEG 单元的短链,在许多不同的分支中,并且至少以中等长度或更长的脂肪链(即 6 个或更多碳原子)的形式具有一些疏水性内容。分子动力学模拟和定量建模的结合是计算机辅助设计稳定辅料的通用蛋白质独立模型的重要第一步。