Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain.
Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
Sci Rep. 2023 Dec 19;13(1):22646. doi: 10.1038/s41598-023-49277-w.
Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.
高甘油三酯血症(HTG)是动脉粥样硬化性心血管疾病(ASCVD)的独立危险因素。HTG 改变的多个起源之一是脂蛋白脂肪酶(LPL)活性受损,这是 HTG 治疗的新兴靶点。我们假设,LPL 活性的早期甚至轻度改变可能导致可识别的代谢组学特征。本研究旨在评估在临床前模型中是否可以识别改变的 LPL 活性的代谢特征。使用泊洛沙姆 407(P407)单次腹腔内注射在雄性 Wistar 大鼠中建立了依赖于 LPL 的 HTG 临床前模型。确定了大鼠代谢组学特征,从而使用机器学习技术开发了预测模型。将预测模型应用于根据临床指南分类的 140 名人类,分类为(1)正常,低于 1.7mmol/L;(2)HTG 风险,高于 1.7mmol/L。P407 注射可有效抑制血浆 LPL 活性,诱导大鼠 HTG。显著响应代谢物(即特定三酰甘油、二酰甘油、磷脂、胆固醇酯和溶血磷脂)用于生成预测模型。具有受损预测 LPL 特征的健康人类志愿者的 TG、TC、LDL 和 APOB 水平明显高于没有受损 LPL 特征的志愿者。基于机制性临床前研究的预测代谢组学模型的应用可被认为是一种分层不同起源 HTG 受试者的策略。这种方法可能对精准医学和营养方法感兴趣。