Department of Physics, Massachusetts Insitute of Technology, Cambridge, MA 02139.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Proc Natl Acad Sci U S A. 2023 Dec 26;120(52):e2309387120. doi: 10.1073/pnas.2309387120. Epub 2023 Dec 21.
Our planet is a self-sustaining ecosystem powered by light energy from the sun, but roughly closed to matter. Many ecosystems on Earth are also approximately closed to matter and recycle nutrients by self-organizing stable nutrient cycles, e.g., microbial mats, lakes, open ocean gyres. However, existing ecological models do not exhibit the self-organization and dynamical stability widely observed in such planetary-scale ecosystems. Here, we advance a conceptual model that explains the self-organization, stability, and emergent features of closed microbial ecosystems. Our model incorporates the bioenergetics of metabolism into an ecological framework. By studying this model, we uncover a crucial thermodynamic feedback loop that enables metabolically diverse communities to almost always stabilize nutrient cycles. Surprisingly, highly diverse communities self-organize to extract [Formula: see text]10[Formula: see text] of the maximum extractable energy, or [Formula: see text]100 fold more than randomized communities. Further, with increasing diversity, distinct ecosystems show strongly correlated fluxes through nutrient cycles. However, as the driving force from light increases, the fluxes of nutrient cycles become more variable and species-dependent. Our results highlight that self-organization promotes the efficiency and stability of complex ecosystems at extracting energy from the environment, even in the absence of any centralized coordination.
我们的星球是一个自我维持的生态系统,其能量来自太阳的光能,但大致与物质隔绝。地球上的许多生态系统也与物质大致隔绝,并通过自我组织的稳定营养循环来回收营养物质,例如微生物垫、湖泊、开阔海洋环流。然而,现有的生态模型并没有表现出在行星尺度的生态系统中广泛观察到的自我组织和动态稳定性。在这里,我们提出了一个概念模型,解释了封闭微生物生态系统的自我组织、稳定性和涌现特征。我们的模型将新陈代谢的生物能量学纳入生态框架。通过研究这个模型,我们揭示了一个关键的热力学反馈循环,使代谢多样化的群落几乎总是能够稳定营养循环。令人惊讶的是,高度多样化的群落自我组织起来,以提取[公式:见文本]10[公式:见文本]的最大可提取能量,或者比随机群落多[公式:见文本]100 倍。此外,随着多样性的增加,不同的生态系统通过营养循环表现出强烈相关的通量。然而,随着光驱动力的增加,营养循环的通量变得更加多变和物种依赖。我们的结果强调了自我组织在从环境中提取能量方面促进了复杂生态系统的效率和稳定性,即使在没有任何集中协调的情况下也是如此。