Shui Yuan, Liu Dong, Zhao Pei, Zhao Xiang, Ehara Masahiro, Lu Xing, Akasaka Takeshi, Yang Tao
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Research Center for Computational Science, Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan.
J Chem Phys. 2023 Dec 28;159(24). doi: 10.1063/5.0180309.
Endohedral metal-metal-bonding fullerenes have recently emerged, in which encapsulated metals form a metal-metal bond. However, the physical reasons why some metal elements prefer to form metal-metal bonds inside fullerene are still unclear. Herein, we reported first-principles calculations on electronic structures, bonding properties, dynamics, and thermodynamic stabilities of endohedral metallofullerenes M2@C82 (M = Sc, Y, La, Lu). Multiple bonding analysis approaches unambiguously reveal the existence of one two-center two-electron σ covalent metal-metal bond in M2@C82 (M = Sc, Y, Lu); however, the La-La bonding interaction in La2@C82 is weaker and could not be categorized as one metal-metal covalent bond. The energy decomposition analysis on bonding interactions between an encapsulated metal dimer and fullerene cages suggested that there exist two electron-sharing bonds between a metal dimer and fullerene cages. The reasons why La2 prefers to donate electrons to fullerene cages rather than form a standard σ covalent metal-metal bond are mainly attributed to two following facts: La2 has a lower ionization potential, while the hybridization of ns, (n - 1)d, and np atomic orbitals in La2 is higher. Ab initio molecular dynamic simulations reveal that the M-M bond length at room temperature follows the trend of Sc < Lu < Y. The statistical thermodynamics calculations at different temperatures reveal that the experimentally observed endohedral metal-metal-bonding fullerenes M2@C82 have high concentrations in the endohedral fullerene formation temperature range.
内嵌金属-金属键富勒烯最近已出现,其中被封装的金属形成金属-金属键。然而,一些金属元素为何更倾向于在富勒烯内部形成金属-金属键的物理原因仍不清楚。在此,我们报道了对内嵌金属富勒烯M2@C82(M = Sc、Y、La、Lu)的电子结构、键合性质、动力学和热力学稳定性的第一性原理计算。多种键合分析方法明确揭示了M2@C82(M = Sc、Y、Lu)中存在一个双中心双电子σ共价金属-金属键;然而,La2@C82中的La-La键相互作用较弱,不能归类为金属-金属共价键。对被封装的金属二聚体与富勒烯笼之间的键合相互作用进行的能量分解分析表明,金属二聚体与富勒烯笼之间存在两个电子共享键。La2更倾向于向富勒烯笼提供电子而不是形成标准的σ共价金属-金属键的原因主要归因于以下两个事实:La2具有较低的电离势,而La2中ns、(n - 1)d和np原子轨道的杂化程度较高。从头算分子动力学模拟表明,室温下M-M键长遵循Sc < Lu < Y的趋势。不同温度下的统计热力学计算表明,实验观察到的内嵌金属-金属键富勒烯M2@C82在内嵌富勒烯形成温度范围内具有高浓度。