Suppr超能文献

识别非转移性肌层浸润性膀胱癌患者行三联疗法的最佳人选。

Identifying Optimal Candidates for Trimodality Therapy among Nonmetastatic Muscle-Invasive Bladder Cancer Patients.

机构信息

Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, China.

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, China.

出版信息

Curr Oncol. 2023 Nov 29;30(12):10166-10178. doi: 10.3390/curroncol30120740.

Abstract

(1) Background: This research aims to identify candidates for trimodality therapy (TMT) or radical cystectomy (RC) by using a predictive model. (2) Methods: Patients with nonmetastatic muscle-invasive bladder cancer (MIBC) in the Surveillance, Epidemiology, and End Results (SEER) database were enrolled. The clinical data of 2174 eligible patients were extracted and separated into RC and TMT groups. To control for confounding bias, propensity score matching (PSM) was carried out. A nomogram was established via multivariable logistic regression. The area under the receiver operating characteristic curve (AUC) and calibration curves were used to assess the nomogram's prediction capacity. Decision curve analysis (DCA) was carried out to determine the nomogram's clinical applicability. (3) Results: After being processed with PSM, the OS of the RC group was significantly longer compared with the TMT group ( < 0.001). This remarkable capacity for discrimination was exhibited in the training (AUC: 0.717) and validation (AUC: 0.774) sets. The calibration curves suggested acceptable uniformity. Excellent clinical utility was shown in the DCA curve. The RC and RC-Beneficial group survived significantly longer than the RC and TMT-Beneficial group ( < 0.001) or the TMT group ( < 0.001). However, no significant difference was found between the RC and TMT-Beneficial group and the TMT group ( = 0.321). (4) Conclusions: A predictive model with excellent discrimination and clinical application value was established to identify the optimal patients for TMT among nonmetastatic MIBC patients.

摘要

(1) 背景:本研究旨在通过建立预测模型,识别接受三联疗法(TMT)或根治性膀胱切除术(RC)的候选患者。

(2) 方法:本研究纳入了 Surveillance, Epidemiology, and End Results(SEER)数据库中患有非转移性肌层浸润性膀胱癌(MIBC)的患者。共提取了 2174 例符合条件患者的临床数据,并将其分为 RC 和 TMT 组。为了控制混杂偏差,进行了倾向评分匹配(PSM)。通过多变量逻辑回归建立了列线图。使用受试者工作特征曲线下面积(AUC)和校准曲线评估列线图的预测能力。通过决策曲线分析(DCA)确定列线图的临床适用性。

(3) 结果:经过 PSM 处理后,RC 组的 OS 明显长于 TMT 组(<0.001)。在训练集(AUC:0.717)和验证集(AUC:0.774)中,均表现出了出色的区分能力。校准曲线表明一致性良好。DCA 曲线显示出了优异的临床实用性。RC 和 RC-获益组的生存时间明显长于 RC 和 TMT-获益组(<0.001)或 TMT 组(<0.001)。然而,RC 和 TMT-获益组与 TMT 组之间无显著差异(=0.321)。

(4) 结论:本研究建立了一种具有出色区分能力和临床应用价值的预测模型,可用于识别非转移性 MIBC 患者中接受 TMT 的最佳患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6378/10742539/8f1ced2edf67/curroncol-30-00740-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验