Suppr超能文献

基于精英个体协作搜索的正弦余弦算法及其在机械优化设计中的应用

Sine Cosine Algorithm for Elite Individual Collaborative Search and Its Application in Mechanical Optimization Designs.

作者信息

Tang Junjie, Wang Lianguo

机构信息

College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

出版信息

Biomimetics (Basel). 2023 Dec 1;8(8):576. doi: 10.3390/biomimetics8080576.

Abstract

To address the shortcomings of the sine cosine algorithm such as the low search accuracy, slow convergence speed, and easily falling into local optimality, a sine cosine algorithm for elite individual collaborative search was proposed. Firstly, tent chaotic mapping was used to initialize the population and the hyperbolic tangent function was applied non-linearly to adjust the parameters of the sine cosine algorithm, which enhanced the uniformity of population distribution and balanced the global exploration and local exploitation ability. Secondly, the search method of the sine cosine algorithm was improved by combining the search strategy of the sine cosine algorithm, the m-neighborhood locally optimal individual-guided search strategy, and the global optimal individual-guided search strategy, and, then, the three search strategies were executed alternately, which achieved collaboration, improved the convergence accuracy, and prevented the algorithm from falling into local optima. Finally, a greedy selection strategy was employed to select the best individuals for the population, which accelerated the convergence speed of the sine cosine algorithm. The simulation results illustrated that the sine cosine algorithm for elite individual collaborative search demonstrated a better optimization performance than the sine cosine algorithm, the other improved sine cosine algorithms, the other chaos-based algorithms, and other intelligent optimization algorithms. In addition, the feasibility and applicability of the sine cosine algorithm for elite individual collaborative search were further demonstrated by two mechanical optimization design experiments.

摘要

为解决正弦余弦算法存在的搜索精度低、收敛速度慢、易陷入局部最优等缺点,提出一种精英个体协作搜索的正弦余弦算法。首先,采用帐篷混沌映射初始化种群,并利用双曲正切函数对正弦余弦算法的参数进行非线性调整,增强了种群分布的均匀性,平衡了全局探索能力和局部开发能力。其次,结合正弦余弦算法的搜索策略、m邻域局部最优个体引导搜索策略和全局最优个体引导搜索策略对正弦余弦算法的搜索方式进行改进,然后交替执行这三种搜索策略,实现了协作,提高了收敛精度,防止算法陷入局部最优。最后,采用贪婪选择策略为种群选择最优个体,加快了正弦余弦算法的收敛速度。仿真结果表明,精英个体协作搜索的正弦余弦算法比正弦余弦算法、其他改进的正弦余弦算法、其他基于混沌的算法以及其他智能优化算法具有更好的优化性能。此外,通过两个机械优化设计实验进一步验证了精英个体协作搜索的正弦余弦算法的可行性和适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02fc/10741403/621cb5ab12a4/biomimetics-08-00576-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验