Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
Eur Radiol. 2024 Jul;34(7):4484-4491. doi: 10.1007/s00330-023-10499-1. Epub 2023 Dec 22.
To assess the potential dose reduction achievable with clinical photon-counting CT (PCCT) in ultra-high resolution (UHR) mode compared to acquisitions using the standard resolution detector mode (Std).
With smaller detector pixels, PCCT achieves far higher spatial resolution than energy-integrating (EI) CT systems. The reconstruction of UHR acquisitions to the lower spatial resolution of conventional systems results in an image noise and radiation dose reduction. We quantify this small pixel effect in measurements of semi-anthropomorphic abdominal phantoms of different sizes as well as in a porcine knuckle in the first clinical PCCT system by using the UHR mode (0.2 mm pixel size at isocenter) in comparison to the standard resolution mode (0.4 mm). At different slice thicknesses (0.4 up to 4 mm) and dose levels between 4 and 12 mGy, reconstructions using filtered backprojection were performed to the same target spatial resolution, i.e., same modulation transfer function, using both detector modes. Image noise and the resulting potential dose reduction was quantified as a figure of merit.
Images acquired using the UHR mode yield lower noise in comparison to acquisitions using standard pixels at the same resolution and noise level. This holds for sharper convolution kernels at the spatial resolution limit of the standard mode, e.g., up to a factor 3.2 in noise reduction and a resulting potential dose reduction of up to almost 90%.
Using sharper convolution kernels, UHR acquisitions allow for a significant dose reduction compared to acquisitions using the standard detector mode.
Acquisitions should always be performed using the ultra-high resolution detector mode, if possible, to benefit from the intrinsic noise and dose reduction.
• Ionizing radiation used in computed tomography examinations is a concern to public health. • The ultra-high resolution of novel photon-counting systems can be invested towards a noise and dose reduction if only a spatial resolution below the resolution limit of the detector is desired. • Acquisitions should always be performed in ultra-high resolution mode, if possible, to benefit from an intrinsic dose reduction.
评估临床光子计数 CT(PCCT)在超高分辨率(UHR)模式下与使用标准分辨率探测器模式(Std)相比可实现的潜在剂量降低。
较小的探测器像素使 PCCT 达到比能量积分(EI)CT 系统高得多的空间分辨率。将 UHR 采集重建为传统系统的较低空间分辨率会导致图像噪声和辐射剂量降低。我们通过使用第一台临床 PCCT 系统中的 UHR 模式(等中心处 0.2mm 像素大小)与标准分辨率模式(0.4mm)比较,在不同大小的半人体腹部体模以及猪指关节中对这种小像素效应进行了定量测量。在不同的切片厚度(0.4 至 4mm)和剂量水平(4 至 12mGy)下,使用两种探测器模式对相同的目标空间分辨率(即相同的调制传递函数)进行滤波反投影重建。将图像噪声和潜在的剂量降低作为一个性能指标进行了量化。
与使用标准像素在相同分辨率和噪声水平下的采集相比,使用 UHR 模式采集的图像噪声更低。在标准模式的空间分辨率极限处使用更锐利的卷积核时,这一点成立,例如,噪声降低高达 3.2 倍,潜在剂量降低高达近 90%。
使用更锐利的卷积核,UHR 采集与使用标准探测器模式相比允许显著的剂量降低。
如果可能,应始终使用超高分辨率探测器模式进行采集,以从固有噪声和剂量降低中受益。
计算机断层扫描检查中使用的电离辐射是公众健康关注的问题。
新型光子计数系统的超高分辨率可投资于噪声和剂量降低,如果仅需要低于探测器分辨率的空间分辨率。
如果可能,应始终在超高分辨率模式下进行采集,以从固有剂量降低中受益。