Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
Sichuan Academy of Eco-Environmental Sciences, Chengdu 610066, PR China.
J Hazard Mater. 2024 Mar 5;465:133284. doi: 10.1016/j.jhazmat.2023.133284. Epub 2023 Dec 16.
The phosphate-mineralizing bacteria (PMBs) has shown great potential as a sustainable solution to support pollution remediation through its induced mineralization capacity. However, few studies have been conducted on the mechanism of cadmium (Cd) tolerance in PMBs. In this study, a PMB strain, Enterobacter sp. PMB-5, screened from Cd-contaminated rhizosphere soil, has high resistance to Cd (540 - 1220 mg/L) and solubilized phosphate (232.08 mg/L). The removal experiments showed that the strain PMB-5 removed 71.69-98.24% and 34.83-76.36% of Cd with and without biomineralization, respectively. The characterization result of SEM, EDS, TEM, XPS and XRD revealed that PMB-5 induced Cd to form amorphous phosphate precipitation through biomineralization and adopted different survival strategies, including biomineralization, bioaccumulation, and biosorption to resistance Cd in the microbial induced phosphate precipitation (MIPP) system and the non-MIPP system, respectively. Moreover, the results of whole genome sequencing and qRT-PCR indicated that phosphorus metabolism genes such as pst, pit, phn, ugp, ppk, etc. and heavy metal tolerance genes (including ion transport, ion efflux, redox, antioxidant stress), such as czcD, zntA, mgtA, mgtC, katE, SOD2, dsbA, cysM, etc. were molecular for the PMB-5 mineralization and Cd tolerance of PMB-5. Together, our findings suggested Enterobacter sp. PMB-5 is a potential target for developing more effective bioinoculants for Cd contamination remediation.
磷细菌(PMB)具有通过诱导矿化能力来支持污染修复的巨大潜力,被认为是一种可持续的解决方案。然而,目前关于 PMB 耐镉机制的研究还很少。本研究从镉污染根际土壤中筛选出一株耐镉(540-1220mg/L)和溶磷(232.08mg/L)能力较强的 PMB 菌株,命名为肠杆菌属 PMB-5。去除实验表明,该菌株在有生物矿化和无生物矿化条件下分别去除了 71.69%-98.24%和 34.83%-76.36%的镉。SEM、EDS、TEM、XPS 和 XRD 的表征结果表明,PMB-5 通过生物矿化将 Cd 诱导形成无定形磷酸沉淀,并在微生物诱导磷沉淀(MIPP)系统和非 MIPP 系统中分别采用生物矿化、生物积累和生物吸附等不同的生存策略来抵抗 Cd。此外,全基因组测序和 qRT-PCR 的结果表明,磷代谢基因如 pst、pit、phn、ugp、ppk 等和重金属耐受基因(包括离子转运、离子外排、氧化还原、抗氧化应激),如 czcD、zntA、mgtA、mgtC、katE、SOD2、dsbA、cysM 等,与 PMB-5 的矿化和 Cd 耐受有关。综上所述,肠杆菌属 PMB-5 可能是开发更有效的生物修复菌剂来修复镉污染的潜在目标。