Suppr超能文献

偏振Z扫描研究揭示了向列相液晶中由于金纳米颗粒二聚体形成导致的表面等离子体耦合增强。

Polarization Z-Scan Studies Revealing Plasmon Coupling Enhancement Due to Dimer Formation of Gold Nanoparticles in Nematic Liquid Crystals.

作者信息

Wang Shengwei, Lipchus Edward J, Gharbi Mohamed Amine, Yelleswarapu Chandra S

机构信息

Department of Physics, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA.

出版信息

Micromachines (Basel). 2023 Dec 5;14(12):2206. doi: 10.3390/mi14122206.

Abstract

We investigate the plasmon coupling of gold nanoparticle (AuNP) dimers dispersed in a nematic liquid crystal matrix using the polarization z-scan technique. Our experimental setup includes the precise control of incident light polarization through polarization angles of 0°, 45°, and 90°. Two distinct cell orientations are examined: parallel and twisted nematic cells. In parallel-oriented cells, where liquid crystal molecules and AuNPs align with the rubbing direction, we observe a remarkable 2-3-fold increase in the nonlinear absorption coefficient when the polarization of the incident light is parallel to the rubbing direction. Additionally, a linear decrease in the third-order nonlinear absorption coefficient is noted as the polarization angle varies from 0° to 90°. In the case of twisted nematic cells, the NPs do not have any preferred orientation, and the enhancement remains consistent across all polarization angles. These findings conclusively establish that the observed enhancement in the nonlinear absorption coefficient is a direct consequence of plasmon coupling, shedding light on the intricate interplay between plasmonic nanostructures and liquid crystal matrices.

摘要

我们使用偏振z扫描技术研究了分散在向列型液晶基质中的金纳米颗粒(AuNP)二聚体的等离子体耦合。我们的实验装置包括通过0°、45°和90°的偏振角精确控制入射光的偏振。研究了两种不同的液晶盒取向:平行和扭曲向列型液晶盒。在平行取向的液晶盒中,液晶分子和金纳米颗粒与摩擦方向对齐,当入射光的偏振平行于摩擦方向时,我们观察到非线性吸收系数显著增加了2至3倍。此外,随着偏振角从0°变化到90°,三阶非线性吸收系数呈线性下降。在扭曲向列型液晶盒的情况下,纳米颗粒没有任何优先取向,并且在所有偏振角下增强效果保持一致。这些发现确凿地证明,观察到的非线性吸收系数的增强是等离子体耦合的直接结果,揭示了等离子体纳米结构与液晶基质之间复杂的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5c/10746126/b5d8c5befe52/micromachines-14-02206-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验