Brent T P, Smith D G, Remack J S
Biochem Biophys Res Commun. 1987 Jan 30;142(2):341-7. doi: 10.1016/0006-291x(87)90279-8.
The reaction of partially purified human O6-alkylguanine-DNA alkyltransferase with 1,3-bis(2-chloroethyl)-1-nitrosourea-treated DNA resulted in formation of a DNA-protein covalent complex. Complex formation required active alkyltransferase and brief treatment of DNA with the drug. DNA lost its capacity to form the complex once drug-induced DNA interstrand cross-links were completely formed. These results are consistent with a model in which the transferase catalyzes cleavage at O6-guanine and transfer of the alkyl moiety in a putative O6, N1-ethanoguanine intermediate of cross-link formation. DNA-protein complex formation presumably results when the transferase accepts the N1-ethanoguanine-DNA structure, analogous to its acceptance of simple alkyl groups.