Pamecha Viniyendra, Patil Nilesh Sadashiv, Gattu Tharun, Kumar Guresh, Pattnaik Bramhadatta, Mohapatra Nihar, Sindwani Gaurav, Choudhury Ashok
From the Liver Transplant and Hepato-Pancreato-Biliary Surgery.
Biostatistics.
Ann Surg Open. 2023 Oct 9;4(4):e332. doi: 10.1097/AS9.0000000000000332. eCollection 2023 Dec.
This study aimed to analyze risk factors and develop a predictive model for early allograft loss due to early graft dysfunction (EGD) in adult live-donor liver transplantation (LDLT).
Data of patients who underwent LDLT from 2011 to 2019 were reviewed for EGD, associated factors, and outcomes. A homogeneous group of 387 patients was analyzed: random cohort A (n = 274) for primary analysis and random cohort B (n = 113) for validation.
Of 274 recipients, 92 (33.6%) developed EGD. The risk of graft loss within 90 days was 29.3% and 7.1% in those with and without EGD, respectively ( < 0.001). Multivariate logistic regression analysis determined donor age ( 0.045), estimated (e) graft weight ( 0.001), and the model for end-stage liver disease (MELD) score (0.001) as independent predictors of early graft loss due to EGD. Regression coefficients of these factors were employed to formulate the risk model: Predicted (P) early graft loss risk (e-GLR) score = 10 × [(donor age × 0.052) + (e-Graft weight × 1.681) + (MELD × 0.145)] - 8.606 (e-Graft weight = 0, if e-Graft weight ≥640 g and e-Graft weight = 1, and if e-Graft weight < 640 g). Internal cross-validation revealed a high predictive value (C-statistic = 0.858).
Our novel risk score can efficiently predict early allograft loss following graft dysfunction, which enables donor-recipient matching, evaluation, and prognostication simply and reliably in adult LDLT.
本研究旨在分析成人活体肝移植(LDLT)中因早期移植物功能障碍(EGD)导致早期移植物丢失的危险因素,并建立预测模型。
回顾2011年至2019年接受LDLT患者的EGD、相关因素及预后数据。分析387例同质患者:随机队列A(n = 274)用于初步分析,随机队列B(n = 113)用于验证。
274例受者中,92例(33.6%)发生EGD。发生EGD和未发生EGD的患者90天内移植物丢失风险分别为29.3%和7.1%(P<0.001)。多因素逻辑回归分析确定供体年龄(P = 0.045)、估计(e)移植物重量(P = 0.001)和终末期肝病模型(MELD)评分(P = 0.001)为EGD导致早期移植物丢失的独立预测因素。利用这些因素的回归系数建立风险模型:预测(P)早期移植物丢失风险(e-GLR)评分=10×[(供体年龄×0.052)+(e-移植物重量×1.681)+(MELD×0.145)]-8.606(若e-移植物重量≥640 g,则e-移植物重量=0;若e-移植物重量<640 g,则e-移植物重量=1)。内部交叉验证显示该模型具有较高的预测价值(C统计量=0.858)。
我们新建立的风险评分能够有效预测移植物功能障碍后的早期移植物丢失,可在成人LDLT中简单、可靠地用于供受体匹配、评估和预后判断。