解析: 1. 关键词:Bidirectional extracellular electron transfer pathways双向细胞外电子传递途径; Geobacter sulfurreducens 脱硫弧菌; Molecular insights 分子见解; Extracellular polymeric substances 胞外聚合物 2. 译文:脱硫弧菌生物膜的双向细胞外电子传递途径:胞外聚合物的分子见解。
Bidirectional extracellular electron transfer pathways of Geobacter sulfurreducens biofilms: Molecular insights into extracellular polymeric substances.
机构信息
Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
出版信息
Environ Res. 2024 Mar 15;245:118038. doi: 10.1016/j.envres.2023.118038. Epub 2023 Dec 24.
The basis for bioelectrochemical technology is the capability of electroactive bacteria (EAB) to perform bidirectional extracellular electron transfer (EET) with electrodes, i.e. outward- and inward-EET. Extracellular polymeric substances (EPS) surrounding EAB are the necessary media for EET, but the biochemical and molecular analysis of EPS of Geobacter biofilms on electrode surface is largely lacked. This study constructed Geobacter sulfurreducens-biofilms performing bidirectional EET to explore the bidirectional EET mechanisms through EPS characterization using electrochemical, spectroscopic fingerprinting and proteomic techniques. Results showed that the inward-EET required extracellular redox proteins with lower formal potentials relative to outward-EET. Comparing to the EPS extracted from anodic biofilm (A-EPS), the EPS extracted from cathodic biofilm (C-EPS) exhibited a lower redox activity, mainly due to a decrease of protein/polysaccharide ratio and α-helix content of proteins. Furthermore, less cytochromes and more tyrosine- and tryptophan-protein like substances were detected in C-EPS than in A-EPS, indicating a diminished role of cytochromes and a possible role of other redox proteins in inward-EET. Proteomic analysis identified a variety of redox proteins including cytochrome, iron-sulfur clusters-containing protein, flavoprotein and hydrogenase in EPS, which might serve as an extracellular redox network for bidirectional EET. Those redox proteins that were significantly stimulated in A-EPS and C-EPS might be essential for outward- and inward-EET and warranted further research. This work sheds light on the mechanism of bidirectional EET of G. sulfurreducens biofilms and has implications in improving the performance of bioelectrochemical technology.
生物电化学技术的基础是电活性细菌(EAB)与电极进行双向细胞外电子转移(EET)的能力,即外向和内向 EET。包围 EAB 的细胞外聚合物质(EPS)是 EET 的必要介质,但对电极表面上 Geobacter 生物膜的 EPS 的生化和分子分析在很大程度上缺乏。本研究构建了能够进行双向 EET 的 Geobacter sulfurreducens 生物膜,通过电化学、光谱指纹图谱和蛋白质组学技术对 EPS 进行特征描述,探索双向 EET 机制。结果表明,内向 EET 需要比外向 EET 具有更低标准还原电位的细胞外氧化还原蛋白。与阳极生物膜(A-EPS)中提取的 EPS 相比,阴极生物膜(C-EPS)中提取的 EPS 表现出较低的氧化还原活性,主要是由于蛋白质/多糖比和蛋白质的α-螺旋含量降低。此外,与 A-EPS 相比,C-EPS 中检测到的细胞色素和酪氨酸和色氨酸蛋白样物质较少,表明细胞色素的作用减弱,而其他氧化还原蛋白在内向 EET 中可能发挥作用。蛋白质组学分析鉴定了 EPS 中的各种氧化还原蛋白,包括细胞色素、含铁硫簇蛋白、黄素蛋白和氢化酶,它们可能作为双向 EET 的细胞外氧化还原网络。在 A-EPS 和 C-EPS 中明显被刺激的那些氧化还原蛋白可能对外向和内向 EET 是必需的,值得进一步研究。这项工作揭示了 G. sulfurreducens 生物膜双向 EET 的机制,并对改善生物电化学技术的性能具有重要意义。