Ghosh Mallika, McGurk Fraser, Norris Rachael, Dong Andy, Nair Sreenidhi, Jellison Evan, Murphy Patrick, Verma Rajkumar, Shapiro Linda H
Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT.
Department of Cell Biology, University of Connecticut Medical School, Farmington, CT.
J Immunol. 2024 Feb 15;212(4):663-676. doi: 10.4049/jimmunol.2300688.
Implanted medical devices, from artificial heart valves and arthroscopic joints to implantable sensors, often induce a foreign body response (FBR), a form of chronic inflammation resulting from the inflammatory reaction to a persistent foreign stimulus. The FBR is characterized by a subset of multinucleated giant cells (MGCs) formed by macrophage fusion, the foreign body giant cells (FBGCs), accompanied by inflammatory cytokines, matrix deposition, and eventually deleterious fibrotic implant encapsulation. Despite efforts to improve biocompatibility, implant-induced FBR persists, compromising the utility of devices and making efforts to control the FBR imperative for long-term function. Controlling macrophage fusion in FBGC formation presents a logical target to prevent implant failure, but the actual contribution of FBGCs to FBR-induced damage is controversial. CD13 is a molecular scaffold, and in vitro induction of CD13KO bone marrow progenitors generates many more MGCs than the wild type, suggesting that CD13 regulates macrophage fusion. In the mesh implant model of FBR, CD13KO mice produced significantly more peri-implant FBGCs with enhanced TGF-β expression and increased collagen deposition versus the wild type. Prior to fusion, increased protrusion and microprotrusion formation accompanies hyperfusion in the absence of CD13. Expression of fusogenic proteins driving cell-cell fusion was aberrantly sustained at high levels in CD13KO MGCs, which we show is due to a novel CD13 function, to our knowledge, regulating ubiquitin/proteasomal protein degradation. We propose CD13 as a physiologic brake limiting aberrant macrophage fusion and the FBR, and it may be a novel therapeutic target to improve the success of implanted medical devices. Furthermore, our data directly implicate FBGCs in the detrimental fibrosis that characterizes the FBR.
植入式医疗设备,从人工心脏瓣膜、关节镜到可植入传感器,常常引发异物反应(FBR),这是一种对持续存在的外来刺激产生炎症反应所导致的慢性炎症形式。FBR的特征是由巨噬细胞融合形成的多核巨细胞(MGC)亚群,即异物巨细胞(FBGC),同时伴有炎性细胞因子、基质沉积,最终导致有害的纤维化植入物包囊形成。尽管人们努力提高生物相容性,但植入物引发的FBR仍然存在,这损害了设备的效用,因此控制FBR对于长期功能来说势在必行。控制FBGC形成过程中的巨噬细胞融合是防止植入物失效的一个合理靶点,但FBGC对FBR所致损伤的实际作用仍存在争议。CD13是一种分子支架,体外诱导CD13基因敲除(CD13KO)的骨髓祖细胞产生的MGC比野生型多得多,这表明CD13调节巨噬细胞融合。在FBR的网状植入模型中,与野生型相比,CD13KO小鼠在植入物周围产生了明显更多的FBGC,其转化生长因子-β(TGF-β)表达增强,胶原蛋白沉积增加。在融合之前,在缺乏CD13的情况下,过度融合会伴随着突起和微突起形成增加。驱动细胞间融合的融合蛋白在CD13KO的MGC中异常持续高水平表达,据我们所知,我们发现这是由于一种新的CD13功能,即调节泛素/蛋白酶体蛋白降解。我们提出CD13作为一种生理制动器,限制异常的巨噬细胞融合和FBR,它可能是提高植入式医疗设备成功率的一个新的治疗靶点。此外,我们的数据直接表明FBGC参与了FBR特征性的有害纤维化过程。