Suppr超能文献

一种用于轮对轴承早期故障识别的改进型无参数经验小波变换。

An improved parameterless empirical wavelet transform for incipient fault identification of wheelset bearing.

作者信息

He Yong, Zhang Tao, Wang Hong

机构信息

School of Mechanical and Electronic, Lanzhou Jiaotong University, Lanzhou 7300730, China.

出版信息

Rev Sci Instrum. 2023 Dec 1;94(12). doi: 10.1063/5.0172091.

Abstract

The empirical wavelet transform (EWT), along with its adaptable spectrum segmentation technique, finds extensive application in the incipient detection of rolling bearing faults. However, determining mode boundaries adaptively under strong noise interference remains a substantial challenge. Herein, an improved parameterless EWT based on the order statistics filter (OSF) is proposed to overcome this shortcoming. This approach replaces the Fourier spectrum with its envelope spectrum through OSF, and the local minima of the envelope spectrum are selected as the initial boundary to obtain the initial empirical modes. Furthermore, the adjacent initial empirical modes are combined using Pearson's correlation coefficient, and the final number and boundaries of empirical modes are automatically determined using the mean envelope entropy. The advantages of the proposed method are demonstrated through an accelerated degradation bearing test bench and a wheelset-bearing test bench, as well as by comparing it with empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and Autogram.

摘要

经验小波变换(EWT)及其自适应频谱分割技术在滚动轴承故障早期检测中有着广泛应用。然而,在强噪声干扰下自适应确定模式边界仍是一个重大挑战。在此,提出一种基于顺序统计滤波器(OSF)的改进型无参数EWT来克服这一缺点。该方法通过OSF用其包络谱替代傅里叶谱,并选择包络谱的局部最小值作为初始边界以获得初始经验模式。此外,使用皮尔逊相关系数对相邻的初始经验模式进行合并,并利用平均包络熵自动确定经验模式的最终数量和边界。通过加速退化轴承试验台和轮对轴承试验台,并将其与经验模式分解(EMD)、集合经验模式分解(EEMD)以及自相关图进行比较,证明了所提方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验