Kong Jian Feng, Ren Yuhua, Tey M S Nicholas, Ho Pin, Khoo Khoong Hong, Chen Xiaoye, Soumyanarayanan Anjan
Agency for Science, Technology & Research (A*STAR), Institute of High Performance Computing, Singapore 138632, Singapore.
Department of Physics, National University of Singapore, Singapore 117551, Singapore.
ACS Appl Mater Interfaces. 2024 Jan 10;16(1):1025-1032. doi: 10.1021/acsami.3c12655. Epub 2023 Dec 29.
The interplay of magnetic interactions in chiral multilayer films gives rise to nanoscale topological spin textures that form attractive elements for next-generation computing. Quantifying these interactions requires several specialized, time-consuming, and resource-intensive experimental techniques. Imaging of ambient domain configurations presents a promising avenue for high-throughput extraction of parent magnetic interactions. Here, we present a machine learning (ML)-based approach to simultaneously determine the key magnetic interactions─symmetric exchange, chiral exchange, and anisotropy─governing the chiral domain phenomenology in multilayers, using a single binarized image of domain configurations. Our convolutional neural network model, trained and validated on over 10,000 domain images, achieved > 0.85 in predicting the parameters and independently learned the physical interdependencies between magnetic parameters. When applied to microscopy data acquired across samples, our model-predicted parameter trends are consistent with those of independent experimental measurements. These results establish ML-driven techniques as valuable, high-throughput complements to conventional determination of magnetic interactions and serve to accelerate materials and device development for nanoscale electronics.
手性多层膜中磁相互作用的相互作用产生了纳米级拓扑自旋纹理,这些纹理构成了下一代计算中引人注目的元素。量化这些相互作用需要几种专门的、耗时的和资源密集型的实验技术。对环境畴结构进行成像为高通量提取母体磁相互作用提供了一条有前景的途径。在这里,我们提出了一种基于机器学习(ML)的方法,使用畴结构的单个二值化图像,同时确定控制多层膜中手性畴现象学的关键磁相互作用——对称交换、手性交换和各向异性。我们的卷积神经网络模型在超过10000张畴图像上进行了训练和验证,在预测参数方面达到了>0.85,并独立学习了磁参数之间的物理相互依存关系。当应用于跨样本获取的显微镜数据时,我们的模型预测的参数趋势与独立实验测量的趋势一致。这些结果将ML驱动的技术确立为传统磁相互作用测定的有价值的高通量补充,并有助于加速纳米级电子学的材料和器件开发。
ACS Appl Mater Interfaces. 2024-1-10
Adv Sci (Weinh). 2022-2
Nano Lett. 2022-1-12
Sci Adv. 2018-7-20
Adv Mater. 2015-5-28
Nano Lett. 2018-3-19