Suppr超能文献

低温水暴露和去除对HY沸石的影响

Impact of Low-Temperature Water Exposure and Removal on Zeolite HY.

作者信息

Zornes Anya, Abdul Rahman Nabihan B, Das Omio Rani, Gomez Laura A, Crossley Steven, Resasco Daniel E, White Jeffery L

机构信息

School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States.

School of Sustainable Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.

出版信息

J Am Chem Soc. 2024 Jan 10;146(1):1132-1143. doi: 10.1021/jacs.3c12437. Epub 2023 Dec 29.

Abstract

Aqueous-phase postsynthetic modifications of the industrially important Y-type zeolite are commonly used to change overall acid site concentrations, introduce stabilizing rare-earth cations, impart bifunctional character through metal cation exchange, and tailor the distribution of Brønsted and Lewis acid sites. Zeolite Y is known to undergo framework degradation in the presence of both vapor- and liquid-phase water at temperatures exceeding 100 °C, and rare-earth exchanged and stabilized HY catalysts are commonly used for fluidized catalytic cracking due to their increased hydrothermal resilience. Here, using detailed spectroscopy, crystallography, and flow-reactor experiments, we reveal unexpected decreases in Brønsted acid site (BAS) density for zeolite HY following exposure even to room-temperature liquid water. These data indicate that aqueous-phase ion-exchange procedures commonly used to modify zeolite Y are impacted by the liquid water and its removal, even when fractional heating rates and inert conditions much less severe than standard practice are used for catalyst dehydration. X-ray diffraction, thermogravimetric, and spectroscopic analyses reveal that the majority of framework degradation occurs during the removal of a strongly bound water fraction in HY, which does not form when NHY is immersed in liquid water and which leads to reduced acidity in HY even when dehydration conditions much milder than those typically practiced are employed. Na-exchanged HY prepared via room-temperature aqueous dissolution demonstrates that Brønsted acid sites are lost in excess of the theoretical maximum that is possible from sodium titration. The structural impact of low-temperature aqueous-phase ion-exchange methods complicates the interpretation of subsequent data and likely explains the wide variation in reported acid site concentrations and catalytic activity of HY zeolites with high-Al content.

摘要

工业上重要的Y型沸石的水相合成后修饰通常用于改变整体酸位浓度、引入稳定的稀土阳离子、通过金属阳离子交换赋予双功能特性以及调整布朗斯特和路易斯酸位的分布。已知在温度超过100°C时,Y型沸石在气相和液相水存在下会发生骨架降解,而稀土交换并稳定化的HY催化剂因其增强的水热稳定性而常用于流化催化裂化。在此,我们通过详细的光谱学、晶体学和流动反应器实验发现,即使暴露于室温液态水后,HY沸石的布朗斯特酸位(BAS)密度也会意外降低。这些数据表明,常用于改性Y型沸石的水相离子交换程序会受到液态水及其去除的影响,即使在催化剂脱水时采用比分标准操作温和得多的分步加热速率和惰性条件也是如此。X射线衍射、热重分析和光谱分析表明,大部分骨架降解发生在去除HY中强结合水部分的过程中,当NHY浸入液态水时不会形成这种强结合水部分,并且即使采用比通常操作温和得多的脱水条件,也会导致HY酸度降低。通过室温水溶液溶解制备的钠交换HY表明,布朗斯特酸位的损失超过了通过钠滴定可能达到的理论最大值。低温水相离子交换方法的结构影响使后续数据的解释变得复杂,这可能解释了报道的高铝含量HY沸石酸位浓度和催化活性的广泛差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验