Suppr超能文献

精细调节收缩性:健康与疾病状态下的心房肌节功能

Fine tuning contractility: atrial sarcomere function in health and disease.

作者信息

Burnham Hope V, Cizauskas Hannah E, Barefield David Y

机构信息

Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States.

出版信息

Am J Physiol Heart Circ Physiol. 2024 Mar 1;326(3):H568-H583. doi: 10.1152/ajpheart.00252.2023. Epub 2023 Dec 29.

Abstract

The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.

摘要

肌节蛋白的分子机制是心脏收缩功能的基础。尽管我们对肌节的理解有了极大的增长,但由于心室在健康和疾病中的关键作用,研究重点一直放在心室肌节亚型上。然而,心房特异性或富集的肌丝蛋白亚型,以及在疾病中表达的亚型,为了解这一复杂分子机器如何进行微调提供了线索。在这里,我们探讨富含心房的肌节蛋白组成如何调节收缩功能,以满足心房功能的生理需求。我们回顾了心房功能障碍如何对心室产生负面影响,以及许多以心房功能障碍为合并症的心血管疾病。我们还阐述了富含心房的收缩蛋白突变的病理生理学,以及它们如何导致原发性心房肌病。最后,我们探讨了目前已知的各种形式心房颤动中的收缩功能。健康和疾病状态下心房功能的差异凸显了更好地研究心房收缩性的重要性,特别是因为目前正在开发的调节心脏收缩性的疗法可能对心房肌节功能有不同影响。

相似文献

1
Fine tuning contractility: atrial sarcomere function in health and disease.
Am J Physiol Heart Circ Physiol. 2024 Mar 1;326(3):H568-H583. doi: 10.1152/ajpheart.00252.2023. Epub 2023 Dec 29.
2
Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H460-H472. doi: 10.1152/ajpheart.00148.2024. Epub 2024 Jun 28.
3
Alpha and beta myosin isoforms and human atrial and ventricular contraction.
Cell Mol Life Sci. 2021 Dec;78(23):7309-7337. doi: 10.1007/s00018-021-03971-y. Epub 2021 Oct 26.
4
Effects of chronic atrial fibrillation on active and passive force generation in human atrial myofibrils.
Circ Res. 2010 Jul 9;107(1):144-52. doi: 10.1161/CIRCRESAHA.110.220699. Epub 2010 May 13.
5
Cardiac Sarcomere Signaling in Health and Disease.
Int J Mol Sci. 2022 Dec 19;23(24):16223. doi: 10.3390/ijms232416223.
6
Increased thin filament activation enhances alternans in human chronic atrial fibrillation.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1453-H1462. doi: 10.1152/ajpheart.00658.2017. Epub 2018 Aug 24.
7
Atrial Fibrillation Related Titin Truncation Is Associated With Atrial Myopathy in Patient-Derived Induced Pluripotent Stem Cell Disease Models.
Circ Genom Precis Med. 2025 Feb;18(1):e004412. doi: 10.1161/CIRCGEN.123.004412. Epub 2025 Jan 24.
9
The molecular and functional identities of atrial cardiomyocytes in health and disease.
Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1882-93. doi: 10.1016/j.bbamcr.2015.11.025. Epub 2015 Nov 24.

引用本文的文献

2
Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H460-H472. doi: 10.1152/ajpheart.00148.2024. Epub 2024 Jun 28.
3
Engineered heart tissue: Design considerations and the state of the art.
Biophys Rev (Melville). 2024 Jun 20;5(2):021308. doi: 10.1063/5.0202724. eCollection 2024 Jun.

本文引用的文献

1
Myosin-binding protein H-like regulates myosin-binding protein distribution and function in atrial cardiomyocytes.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2314920120. doi: 10.1073/pnas.2314920120. Epub 2023 Dec 13.
2
A detailed mathematical model of the human atrial cardiomyocyte: integration of electrophysiology and cardiomechanics.
J Physiol. 2024 Sep;602(18):4543-4583. doi: 10.1113/JP283974. Epub 2023 Aug 28.
3
Danicamtiv Increases Myosin Recruitment and Alters Cross-Bridge Cycling in Cardiac Muscle.
Circ Res. 2023 Aug 18;133(5):430-443. doi: 10.1161/CIRCRESAHA.123.322629. Epub 2023 Jul 20.
4
Cryo-EM structure of the folded-back state of human β-cardiac myosin.
Nat Commun. 2023 May 31;14(1):3166. doi: 10.1038/s41467-023-38698-w.
5
Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies.
Curr Cardiol Rep. 2023 Jun;25(6):473-484. doi: 10.1007/s11886-023-01876-9. Epub 2023 Apr 15.
7
Description of a Novel Cardiac Phenotype Associated With a Missense Variant in the Cardiac α-Actin () Gene.
Circ Genom Precis Med. 2023 Apr;16(2):e003963. doi: 10.1161/CIRCGEN.122.003963. Epub 2023 Mar 24.
9
Novel filamin C (FLNC) variant causes a severe form of familial mixed hypertrophic-restrictive cardiomyopathy.
Am J Med Genet A. 2023 Jun;191(6):1508-1517. doi: 10.1002/ajmg.a.63169. Epub 2023 Mar 2.
10
COVID-19 and atrial fibrillation: Intercepting lines.
Front Cardiovasc Med. 2023 Jan 23;10:1093053. doi: 10.3389/fcvm.2023.1093053. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验