Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Łojasiewicza 11, 30-348, Kraków, Poland.
Microb Ecol. 2023 Dec 29;87(1):22. doi: 10.1007/s00248-023-02333-4.
Biological soil crust (BSC) constitutes a consortium of cyanobacteria, algae, lichen, mosses, and heterotrophic microorganisms, forming a miniature ecosystem within the uppermost soil layer. The biomass of different organisms forming BSC and their activity changes along with succession. Previous studies focused primarily on BSC in hyper-arid/arid regions, whereas the ecophysiology of BSC in temperate climates is still not well recognized. In order to determine changes in overall microbial activity and photosynthetic biomass in BSC at different stages of the succession of inland sandy grasslands, we analyzed dehydrogenase activity and determined the content of photosynthetic pigments. We also compared these parameters between BSC developed on the dune ridges and aeolian blowouts in the initial stage of succession. Our study revealed a significant increase in both photosynthetic biomass and overall microbial activity in BSC as the succession of inland shifting sands progresses. We found that chl a concentration in BSC could be considered a useful quantitative indicator of both the presence of photoautotrophs and the degree of soil crust development in warm-summer humid continental climates. The photosynthetic biomass was closely related to increased microbial activity in BSC, which suggests that photoautotrophs constitute a major BSC component. Dune blowouts constitute environmental niches facilitating the development of BSC, compared to dune ridges. High biomass of microorganisms in the dune blowouts may be associated with a high amount of organic material and more favorable moisture conditions. We conclude that deflation fields are key places for keeping a mosaic of habitats in the area of shifting sands and can be a reservoir of microorganisms supporting further settlement of dune slopes by BSC.
生物土壤结皮(BSC)由蓝细菌、藻类、地衣、苔藓和异养微生物组成,在最上层土壤中形成微型生态系统。形成 BSC 的不同生物体的生物量及其活性随演替而变化。以前的研究主要集中在超干旱/干旱地区的 BSC 上,而温带气候下 BSC 的生态生理学仍未得到充分认识。为了确定内陆沙质草地演替过程中不同阶段的 BSC 中整体微生物活性和光合生物量的变化,我们分析了脱氢酶活性并测定了光合色素的含量。我们还比较了演替初期沙丘脊和风沙吹蚀坑中发育的 BSC 的这些参数。我们的研究表明,随着内陆推移沙的演替,BSC 的光合生物量和整体微生物活性都显著增加。我们发现 BSC 中的chl a 浓度可以作为温夏湿润大陆气候下光自养生物存在和土壤结皮发育程度的有用定量指标。光合生物量与 BSC 中微生物活性的增加密切相关,这表明光自养生物是 BSC 的主要组成部分。与沙丘脊相比,沙丘吹蚀坑为 BSC 的发展提供了环境小生境。沙丘吹蚀坑中微生物的高生物量可能与大量的有机物质和更有利的水分条件有关。我们得出结论,风蚀洼地是保持推移沙区生境镶嵌的关键场所,并且可以成为支持 BSC 进一步定居的微生物的储库。