Shin Wookjin, Lee Yeongdo, Lim Jueun, Lee Youbin, Lah Jungsu David, Lee Somin, Lee Jung-Uk, Yu Ri, Lee Phil Hyu, Lee Jae-Hyun, Kwak Minsuk, Cheon Jinwoo
Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea.
Department of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
Nano Lett. 2024 Jan 10;24(1):270-278. doi: 10.1021/acs.nanolett.3c03899. Epub 2023 Dec 29.
Here, we introduce the magneto-mechanical-genetic (MMG)-driven wireless deep brain stimulation (DBS) using magnetic nanostructures for therapeutic benefits in the mouse model of Parkinson's disease (PD). Electrical DBS of the subthalamic nucleus (STN) is an effective therapy for mitigating Parkinson's motor symptoms. However, its broader application is hampered by the requirement for implanted electrodes and the lack of anatomical and cellular specificity. Using the nanoscale magnetic force actuators (m-Torquer), which deliver torque force under rotating magnetic fields to activate pre-encoded Piezo1 ion channels on target neurons, our system enables wireless and STN-specific DBS without implants, addressing key unmet challenges in the DBS field. In both late- and early-stage PD mice, MMG-DBS significantly improved locomotor activity and motor balance by 2-fold compared to untreated PD mice. Moreover, MMG-DBS enabled sustained therapeutic effects. This approach provides a non-invasive and implant-free DBS with cellular targeting capability for the effective treatment of Parkinsonian symptoms.
在此,我们介绍了磁机械基因(MMG)驱动的无线深部脑刺激(DBS),该技术利用磁性纳米结构在帕金森病(PD)小鼠模型中实现治疗效果。丘脑底核(STN)的电深部脑刺激是减轻帕金森运动症状的有效疗法。然而,其更广泛的应用受到植入电极需求以及缺乏解剖学和细胞特异性的阻碍。我们的系统使用纳米级磁力致动器(m-Torquer),在旋转磁场下传递扭矩力以激活靶神经元上预先编码的Piezo1离子通道,从而实现无植入物的无线且针对STN的深部脑刺激,解决了深部脑刺激领域关键的未满足挑战。在晚期和早期帕金森病小鼠中,与未治疗的帕金森病小鼠相比,MMG-DBS显著将运动活性和运动平衡提高了两倍。此外,MMG-DBS实现了持续的治疗效果。这种方法提供了一种具有细胞靶向能力的非侵入性且无植入物的深部脑刺激,用于有效治疗帕金森症状。