Suppr超能文献

质量控制验证的重要性以及与总误差质量目标和实验室结果解释偏倚的关系。

The importance of quality control validation and relationships with total error quality goals and bias in the interpretation of laboratory results.

机构信息

Veterinary Information Network, Davis, California, USA.

scil animal care company, an Antech company, Viernheim, Germany.

出版信息

Vet Clin Pathol. 2024 Feb;53 Suppl 1:65-74. doi: 10.1111/vcp.13321. Epub 2024 Jan 2.

Abstract

The objective of a quality system is to provide accurate and reliable results for clinical decision-making. One part of this is Quality Control (QC) validation. QC validation is not routinely applied in veterinary laboratories. This leads to the inappropriate usage of random QC rules without knowing the Probability of error detection (P ) and Probability of false rejection (P ) of a method. In this paper, we will discuss why QC validation is important, when it should be undertaken, why QC validation is done, and why it is not commonly done. We will present the role of total analytical error (TEa) in the QC validation process and the challenges when a consensus TEa has not been published. Finally, we will also discuss the possibilities of 'gray zone' determinations and mention the effects of bias on the quality of results. Reasons for the low prevalence of performing QC validation may include (a) lack of familiarity with the concept, (b) lack of time and resources needed to conduct QC validation, and (c) lack of TEa goal for some measurands. If no TEa is available, the user may elect to use a 'reverse approach' to QC validation. This uses the CV and bias generated from the evaluation of QC measurements, specifying P , P , and N (number of QC measurements/run). This identifies the lowest total error that can be controlled under these defined conditions, thus enabling the laboratory to have an estimate of the 'gray zone' associated with results generated with a specific assay.

摘要

质量体系的目标是为临床决策提供准确可靠的结果。其中一部分是质量控制 (QC) 验证。兽医实验室通常不进行 QC 验证。这导致在不知道方法的错误检出概率 (P) 和错误拒绝概率 (P) 的情况下,不恰当地使用随机 QC 规则。在本文中,我们将讨论为什么 QC 验证很重要、何时进行、为什么进行以及为什么不经常进行。我们将介绍总分析误差 (TEa) 在 QC 验证过程中的作用,以及当尚未发布共识 TEa 时面临的挑战。最后,我们还将讨论“灰色区域”测定的可能性,并提到偏倚对结果质量的影响。进行 QC 验证的比例低的原因可能包括:(a)对概念不熟悉;(b)进行 QC 验证所需的时间和资源不足;(c)一些可测量指标缺乏 TEa 目标。如果没有 TEa,则用户可以选择使用 QC 验证的“反向方法”。该方法使用从 QC 测量评估中生成的 CV 和偏倚,指定 P、P 和 N(QC 测量/运行次数)。这确定了在这些定义条件下可以控制的最低总误差,从而使实验室能够估计与特定检测相关的“灰色区域”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验