Suppr超能文献

预测前置胎盘患者胎盘植入的列线图模型:整合 MRI 表现与临床特征。

Nomogram model for predicting invasive placenta in patients with placenta previa: integrating MRI findings and clinical characteristics.

机构信息

Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.

Department of Radiology, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China.

出版信息

Sci Rep. 2024 Jan 2;14(1):200. doi: 10.1038/s41598-023-50900-z.

Abstract

This study aims to validate a nomogram model that predicts invasive placenta in patients with placenta previa, utilizing MRI findings and clinical characteristics. A retrospective analysis was conducted on a training cohort of 269 patients from the Second Affiliated Hospital of Fujian Medical University and a validation cohort of 41 patients from Quanzhou Children's Hospital. Patients were classified into noninvasive and invasive placenta groups based on pathological reports and intraoperative findings. Three clinical characteristics and eight MRI signs were collected and analyzed to identify risk factors and develop the nomogram model. The mode's performance was evaluated in terms of its discrimination, calibration, and clinical utility. Independent risk factors incorporated into the nomogram included the number of previous cesarean sections ≥ 2 (odds ratio [OR] 3.32; 95% confidence interval [CI] 1.28-8.59), type-II placental bulge (OR 17.54; 95% CI 3.53-87.17), placenta covering the scar (OR 2.92; CI 1.23-6.96), and placental protrusion sign (OR 4.01; CI 1.06-15.18). The area under the curve (AUC) was 0.908 for the training cohort and 0.803 for external validation. The study successfully developed a highly accurate nomogram model for predicting invasive placenta in placenta previa cases, based on MRI signs and clinical characteristics.

摘要

本研究旨在利用 MRI 表现和临床特征验证一种预测前置胎盘合并胎盘植入的列线图模型。回顾性分析了福建医科大学附属第二医院的 269 例患者(训练队列)和泉州市儿童医院的 41 例患者(验证队列)。根据病理报告和术中所见,将患者分为非侵袭性胎盘和侵袭性胎盘组。收集并分析了三个临床特征和八个 MRI 征象,以确定危险因素并建立列线图模型。该模型的性能通过其判别能力、校准度和临床实用性进行评估。纳入列线图的独立危险因素包括:剖宫产史≥2 次(优势比 [OR] 3.32;95%置信区间 [CI] 1.28-8.59)、Ⅱ型胎盘膨出(OR 17.54;95% CI 3.53-87.17)、胎盘覆盖瘢痕(OR 2.92;CI 1.23-6.96)和胎盘突出征(OR 4.01;CI 1.06-15.18)。训练队列的曲线下面积(AUC)为 0.908,外部验证的 AUC 为 0.803。本研究成功基于 MRI 征象和临床特征,为预测前置胎盘合并胎盘植入开发了一种高度准确的列线图模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ff9/10761737/0cc3b0ccd0b3/41598_2023_50900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验