Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain.
Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain.
Sci Rep. 2024 Jan 2;14(1):189. doi: 10.1038/s41598-023-50685-1.
Enterobacter cloacae starred different pioneer studies that enabled the development of a widely accepted model for the peptidoglycan metabolism-linked regulation of intrinsic class C cephalosporinases, highly conserved in different Gram-negatives. However, some mechanistic and fitness/virulence-related aspects of E. cloacae choromosomal AmpC-dependent resistance are not completely understood. The present study including knockout mutants, β-lactamase cloning, gene expression analysis, characterization of resistance phenotypes, and the Galleria mellonella infection model fills these gaps demonstrating that: (i) AmpC enzyme does not show any collateral activity impacting fitness/virulence; (ii) AmpC hyperproduction mediated by ampD inactivation does not entail any biological cost; (iii) alteration of peptidoglycan recycling alone or combined with AmpC hyperproduction causes no attenuation of E. cloacae virulence in contrast to other species; (iv) derepression of E. cloacae AmpC does not follow a stepwise dynamics linked to the sequential inactivation of AmpD amidase homologues as happens in Pseudomonas aeruginosa; (v) the enigmatic additional putative AmpC-type β-lactamase generally present in E. cloacae does not contribute to the classical cephalosporinase hyperproduction-based resistance, having a negligible impact on phenotypes even when hyperproduced from multicopy vector. This study reveals interesting particularities in the chromosomal AmpC-related behavior of E. cloacae that complete the knowledge on this top resistance mechanism.
阴沟肠杆菌在不同的开创性研究中扮演了重要角色,这些研究为广泛接受的固有 C 类头孢菌素酶与肽聚糖代谢相关的调节模型奠定了基础,该模型在不同的革兰氏阴性菌中高度保守。然而,阴沟肠杆菌染色体 AmpC 依赖性耐药性的一些机制和与适应性/毒力相关的方面尚未完全了解。本研究包括敲除突变体、β-内酰胺酶克隆、基因表达分析、耐药表型特征以及金龟子幼虫感染模型,填补了这些空白,证明了:(i)AmpC 酶没有任何影响适应性/毒力的旁系活性;(ii)ampD 失活介导的 AmpC 过度产生不会带来任何生物学成本;(iii)单独改变肽聚糖循环或与 AmpC 过度产生相结合不会导致阴沟肠杆菌毒力减弱,与其他物种相反;(iv)与假单胞菌中发生的 AmpD 酰胺酶同源物顺序失活相关的逐步动力学不同,阴沟肠杆菌 AmpC 的去阻遏并不遵循这种动力学;(v)阴沟肠杆菌中普遍存在的神秘额外推定 AmpC 型β-内酰胺酶对基于经典头孢菌素酶过度产生的耐药性没有贡献,即使从多拷贝载体过度产生,对表型也几乎没有影响。本研究揭示了阴沟肠杆菌染色体 AmpC 相关行为的有趣特点,完善了对这种顶级耐药机制的认识。